Supporting Information:

Construction of Unique Heterojunction Photoanodes through *in-situ* Quasi-Epitaxial Growth of FeVO₄ on Fe₂O₃ Nanorod Arrays for Enhanced Photoelectrochemical Performance

Wenwu Zhu ^{a,†}, Yiqing Wei ^{a,†}, Zhengchu Liu ^a, Yongcai Zhang ^c, Huichao He ^d, Shaoguang Yang ^a, Zhengdao Li ^{b,*}, , Zhigang Zou ^{a,e}, Yong Zhou ^{a,e*}

- a. National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, P. R. China. E-mail: <u>zhouyong1999@nju.edu.cn</u>
- b. Chemistry and Pharmaceutical Engineering College, Nanyang Normal University, Nanyang 473061, Henan, P. R. China. E-mail: <u>nylzd@nynu.edu.cn</u>
- c. Yangzhou University, College of Chemistry and Chemical Engineering, Yangzhou 225002, P. R. China
- d. Institute of Environmental Energy Materials and Intelligent Devices, School of Me tallurgy and Materials Engineering, Chongqing University of Science and Techno logy. Chongqing 401331, P. R. China.
- e. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, P. R. China

Figure S1. Color diagram of the photoanodes.

Figure S1 is the color schematic diagram of the prisitine Fe_2O_3 photoanode (a), FeVO₄-Fe₂O₃ photoanode with 7 mM vanadyl acetylacetonate (b) and FeVO₄-Fe₂O₃ photoanode with 20 mM vanadyl acetylacetonate (c) . It can be seen that as the concentration of vanadyl acetylacetonate increases, the color of the photoelectrode also changes. Compared with the prisitine Fe₂O₃ photoanode, the FeVO₄-Fe₂O₃ photoanode with 20 mM vanadyl acetylacetonate has shown obvious color deepening.

Figure S2. EDS elemental mapping of the FeVO₄-Fe₂O₃ photoanode.

Figure S3. TEM image of the FeVO₄-Fe₂O₃ photoanode.

	Area of $Fe^{2+}2p_{3/2}$	Area of $Fe^{2+}2p_{1/2}$	Sum
FeVO ₄ -Fe ₂ O ₃	12106.05	5186.25	17292.3
photoanode			
Fe ₂ O ₃ photoanode	14262.23	3864.48	18126.71

Table S1. The $Fe^{2+}elemental \ content \ of \ the \ photoanodes$

Figure S4. LSV curves of FeVO₄-Fe₂O₃ photoanode of various concentrations of vanadyl acetylacetonate.

wavelength	400	435	450	475	500	550	600	650
	nm	nm	nm	nm	nm	nm	nm	nm
IPCE of the FeVO ₄ -	22.67	15.51	11.03	6.76	4.93	2.43	0.95	0.67
Fe ₂ O ₃ photoanode (%)								
IPCE of the pristine	9.26	6.39	4.54	2.78	2.07	0.92	0.54	0.46
Fe ₂ O ₃ photoanode (%)								

 Table S2. The IPCE of the photoanodes

Figure S5. LSV curves of pristine Fe_2O_3 photoanode and $FeVO_4$ - Fe_2O_3 photoanode with and without hole scavenger.

Figure S6. EIS equivalent circuit diagram.

photoanode	Rs (Ω)	Rct (Ω)
Fe ₂ O ₃	11.01	329.9
FeVO ₄ -Fe ₂ O ₃	10.82	239.1

Figure S7. EIS parameters of pristine Fe₂O₃ photoanode and FeVO₄-Fe₂O₃ photoanode.

Figure S8. SEM images of the $FeVO_4$ - Fe_2O_3 photoanode (a) before and (b) after the stability test.

Figure S9. XRD image of the $FeVO_4$ - Fe_2O_3 photoanode before and after the stability test.

Figure S10. (a) UV-vis diffuse reflectance spectra of pristine Fe_2O_3 and $FeVO_4$ - Fe_2O_3 photoanodes, (b) the Tauc plot of pristine Fe_2O_3 photoanode.

The UV-vis results show the absorption curve of the $FeVO_4$ - Fe_2O_3 photoanode is slightly improved in the whole wavelength range, compared with the curve intensity of the Fe_2O_3 photoanode (Figure 5a). While the absorptive intensity and shift degree do not be improved significantly, but still demonstrate the effect of $FeVO_4$, and the insignificant lifting effect is attributed to the thinness of the $FeVO_4$. Formation of $FeVO_4$ - Fe_2O_3 heterojunction could enable the prepared photoanode to utilize visible light efficaciously. The band gap could be calculated according to the following equation:

$$(\alpha h v)^n = A(h v - E_q) \tag{S1}$$

Where α , hv, A, and E_{gare} the absorption coefficient, discrete photo energy, a constant and bandgap energy. The n value of Fe₂O₃ and FeVO₄ are 2.^{1, 2} The calculated result is displayed in Figure 5b, the band gap energies of pristine Fe₂O₃ photoanode is about 2.2 eV, which is consistent with theoretical results.³

Figure S11. (a)MT result and (b)Tauc plot of pristine FeVO₄ photoanode.

The pristine FeVO₄ film was prepared on the basis of previously reported methods.⁴ The preparation of FeOOH is the same as this work, the original FeVO₄ photoanode is prepared by drop casting and annealing process. First, an excess dimethyl sulfoxide (DMSO) solution containing 0.1 M vanadium acetylacetonate (VO (acac)2) is evenly coated on the FEOOH film. After drying on a plate heater at 75°C, it is placed in a muffle furnace, annealed in air at 550°C for 5 hours, and then cooled naturally. The obtained composite membrane was placed in a 0.1 M NaOH solution for 2 h to dissolve the excess vanadium oxide, then washed several times with distilled water, and dried at 60 °C. After that, a FeVO₄ photoanode was obtained.

- 1. J. Ma, Q. Wang, L. Li, X. Zong, H. Sun, R. Tao and X. Fan, *Journal of Colloid and Interface Science*, 2021, **602**, 32-42.
- 2. A. Chachvalvutikul, J. Jakmunee, S. Thongtem, S. Kittiwachana and S. Kaowphong, *Applied Surface Science*, 2019, **475**, 175-184.
- 3. G. Yang, S. Li, X. Wang, B. Ding, Y. Li, H. Lin, D. Tang, X. Ren, Q. Wang and S. Luo, *Applied Catalysis B: Environmental*, 2021, **297**, 120268.
- 4. Q. Zeng, X. Fu, S. Chang, Q. Zhang, Z. Xiong, Y. Liu, G. Peng and M. Li, *Journal of Colloid and Interface Science*, 2021, **604**, 562-567.