A hierarchical monolithic Co-single-atom electrode for efficient hydrogen peroxide production in acid

Jie Ding^a, Jian Huang^a, Qiao Zhang^a, Zhiming Wei^a, Qinye He^a, Zhaoyang Chen^a, Yuhang Liu^{b,c}, Xiaozhi Su^{*b}, and Yueming Zhai^{*a}

^a The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China

^b Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China

^c School of Physical Science & Technology, Suzhou University of Science and Technology, Suzhou 215009, China

E-mail: <u>yueming@whu.edu.cn</u> <u>suxiaozhi@zjlab.org.cn</u> **Preparation of Co₁/NC.** A typical 3-electrode cell was constructed with graphene nanosheets/carbon paper as a working electrode, a graphite rod as a counter electrode, and a saturated calomel electrode (SCE) as a reference electrode. The electrolyte is a mixture solution containing 4.5 mL of HNO₃, 3.4 mL of aniline, and 42.1 mL of water. Aniline was polymerized onto the surface of graphene nanosheets by a potentiostatic method (0.7 V, 120s) in the cell, and PANI/GN was obtained. Then, PANI/GN was washed thoroughly and dried at 60 °C overnight. Next, PANI/GN was vertically placed in the K₃[Co(CN)₆] solution at 45 °C for 4h under stirring to trap Co atoms. Again, this precursor should be washed thoroughly and dried. Calcination process was conducted at 750 °C under Ar atmosphere with a ramp rate of 1.5 °C/min and the temperature was kept for 2h, followed by acid leaching. The obtained sample was denoted as Co₁/NC.

Preparation of NC. The synthesis procedure of NC is the same as the preparation of Co_1/NC except the step of introduction of Co atoms.

Characterization. The morphology was collected by FESEM (JEOL JSM-6700F) and TEM (JEOL JEM-2100F). Sub-angstrom-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was performed on a JEOL JEMARM200F STEM/TEM. The crystal structure was examined by XRD (Bruker AXS D8 Advance). The mass content of Co in Co₁/NC was measured by ICP-OES (PerkinElmer). XPS was conducted on an ESCALAB 250 photoelectron spectrometer (Thermo Fisher Scientific) using a monochromatic Al K α X-ray beam (1486.6 eV). All binding energies were calibrated to the C 1s peak (284.6 eV) arising from the adventitious carbon-containing species. X-ray absorption spectroscopy (XAS) was collected by employing synchrotron radiation light source at BL14W1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) at room temperature. Energy calibration was performed with a Co foil standard by shifting all spectra to a glitch in the incident intensity.

Electrochemical measurements. A three-electrode system was employed to measure the electrochemical performance in an H-type cell. The measurements were conducted on CHI 660E workstation with a graphite rod as a counter electrode and a saturated Ag/AgCl as a reference electrode. 0.1 M O_2 -saturated HClO₄ was used as the electrolyte.

Device assembly. The flow cell contains three components: the cathode part, the anode part, and the membrane. The whole cell is filled with 0.1 M HClO₄.

Figure S1 (a-b) TEM images of Co_1/NC . (c) EDS elemental mappings of Co_1/NC . (d) Line scans of Co_1/NC .

Figure S2. SEM (a), HR-TEM (b) and EDS elemental mappings (c) images of NC.

Figure S3 LSV curves of Co $_1/NC$ measured in $N_2\mbox{-saturated}$ and O $_2\mbox{-saturated}$ solution.

Figure S4 $\rm H_2O_2$ selectivity of Co $_1/\rm NC$ and Co-D.

name	Ν	S02	sigma^2	e0	delr	Reff	R
Co(K)-N	0.900	4.020	0.00793	-5.573	-0.01989	1.90000	1.88011
name	ei	third	fourth				
Co(K)-N	0.00000	0.00000	0.00000				

Table S1 Fitting parameters of the EXAFS of the Co_1/NC .

Table S2 Performance of various H_2O_2 flow cells.

Catalyst	Production rate (mol/kg _{cat} /h)	Ref
Co ₁ /NC	606	This work
CoN_2C_x	117	[1]
2.5% Pd/XC-72	129	[2]
Au@SiO ₂	24.8	[3]

References

- □1□ I. Yamanaka, S. Tazawa, T. Murayama, T. Iwasaki, S. Takenaka, *Chemsuschem: Chem.* & *Sus. Energy & Mater.* 2010, **3**, 59-62.
- B. Hu, W. Deng, R. Li, Q. Zhang, Y. Wang, F. Delplanque-Janssens, D. Paul, F. Desmedt,
 P. Miquel, J. Catal. 2014, 319, 15-26.
- I. Ouyang, L. Tan, J. Xu, P.-F. Tian, G.-J. Da, X.-J. Yang, D. Chen, F. Tang, Y.-F. Han, *Catal. Today* 2015, 248, 28-34.