Supplementary Information for

Understanding the multiple interactions in vanadium-based SCR catalysts during simultaneous NO_x and soot abatement

Lei Zheng,¹ Maria Casapu,¹ Jan-Dierk Grunwaldt,^{1,2,*}

¹ Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany

² Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany

*Corresponding author: Prof. Dr. Jan-Dierk Grunwaldt

Email: grunwaldt@kit.edu

Content

1. Experimental section	S3
1.1 Testing protocol	S3
2. Further / additional results	S4
2.1 Catalyst characterization	S4
2.2 Summary of NTCOx results	S5
2.3 Summary of T_0 results	S6
2.4 Summary of T _{50p} results	S7
2.5 Influence of NO+H2O gas mixture on soot oxidation	S8
2.6 Influence of NO ₂ +H ₂ O gas mixture on soot oxidation	S9
2.7 Effect of wet standard SCR gas mixture on soot oxidation	S10
2.8 Effect of wet fast SCR gas mixture on soot oxidation	S11
2.9 Effect of soot on SCR of NO _x with NH_3	S12

1. Experimental section

1.1 Testing protocol

Figure S1. Testing protocol to probe gas-soot-catalyst interactions applied in the present study.

2. Further / additional results

2.1 Catalyst characterization

Figure S2. (a) X-ray diffraction (XRD) pattern of investigated VWTi catalyst: XRD pattern was recorded using a Bruker Advance D8 diffractometer with Ni-filtered Cu K α radiation (1.54060 Å) in a range of 2 θ = 20-80° and a step size of 0.0150°. (b) Raman spectra of investigated VWTi catalyst: Raman spectroscopy measurement was conducted on a Renishaw inVia confocal Raman microscope. A Nd-YAG laser with a wavelength of 532 nm (100 mW) and a 2400 l/mm grating was used. Spectra were taken with 0.5% laser power and ca. 40–50 spectra of a small line area were measured which were averaged after cosmic ray removal using Renishaw WiRETM software.

Table S1. The specific s	surface area and che	emical composition of	the investigated V	WTi catalyst.
			0	

		Elem	ental compositio	n [wt.%] ²
Sample	Specific surface area S _{BET} [m ² /g] ¹	V	W	Ti
VWTi	64	1.66	7.49	50.8

¹ The specific surface area was measured by N₂ physisorption at -196°C using multipoint measurements on a BELSORP-mini instrument (MicrotracBEL, Osaka, Japan). Prior to the measurement, all samples were degassed in vacuum at 300 °C for 2 h. ² Chemical composition of the catalyst is determined using inductively coupled plasma optical emission spectroscopy (ICP-OES) on an OPTIMA 4300 DV spectrometer (PerkinElmer). The standard deviation is below 0.4 for Ti, and below 0.1 for other elements. The V₂O₅ and WO₃ concentrations are 2.96 wt.% and 10.01 wt.%, respectively, according to ICP-OES results, which is consistent with our target composition of 3 wt.% V₂O₅-10 wt.% WO₃/TiO₂.

2.2 Summary of NTCO_x results

Table S2. List of the normalized total CO_x formation (NTCO_x) when feeding various SCR-related gas mixtures to different soot-catalyst contact types including soot-only, soot-catalyst in both loose and tight contact. NTCO_x is a ratio that in each condition the obtained CO+CO₂ formation was normalized to the value obtained from O₂-soot reaction (benchmark). The gas mixture mixtures are listed in Table 1.

		NTCOx (normalized by non-catalytic soot oxidation in $10\%O_2/N_2$)			
Gas mixture	Main factor —	gas-soot	gas-soot-catalyst (loose)	gas-soot-catalyst (tight)	
Gas-1	inert (N ₂)	0.5	0.9	1.7	
Gas-2	baseline (O ₂)	1.0	1.8	12.9	
Gas-3	NO ₂	12.7	11.6	25.9	
Gas-4	NO	1.3	5.2	20.4	
Gas-5	NH ₃	0.4	3.2	18.0	
Gas-6	H ₂ O	1.6	8.4	26.7	
Gas-7	NO in H ₂ O	1.7	11.8	31.0	
Gas-8	NO ₂ in H ₂ O	10.5	20.2	33.6	
Gas-9	dry standard SCR	0.6	4.9	20.6	
Gas-10	dry fast SCR	2.9	6.6	22.9	
Gas-11	wet standard SCR	1.2	12.6	31.2	
Gas-12	wet fast SCR	5.7	13.3	34.0	

2.3 Summary of To results

Gas		T_{o} (°C) and the corresponding CO+CO ₂ emission (ppm)			
mixture	Main factor	gas-soot	gas-soot-catalyst (loose)	gas-soot-catalyst (tight)	
Gas-1	inert (N ₂)	- (-)	452 °C (22.7 ppm)	202 °C (6.4 ppm) and 312 °C (19 ppm)	
Gas-2	baseline (O ₂)	346 °C (13 ppm)	329 °C (28.5 ppm)	203 °C (13.6 ppm) and 329 °C (28 ppm)	
Gas-3	NO ₂	344 °C (12 ppm)	315 °C (30.7 ppm)	204 °C (11.3 ppm) and 314 °C (32.5 ppm)	
Gas-4	NO	320 °C (18 ppm)	312 °C (37 ppm)	212 °C (20 ppm) and 300 °C (40.5 ppm)	
Gas-5	NH₃	348 °C (7.8 ppm)	336 °C (16 ppm)	224 °C (9.5 ppm) and 337 °C (23.3 ppm)	
Gas-6	H ₂ O	338 °C (13 ppm)	310 °C (23.1 ppm)	203 °C (12.9 ppm) and 334 °C (32.5 ppm)	
Gas-7	NO in H ₂ O	341 °C (11.2 ppm)	331 °C (25.9 ppm)	217 °C (13 ppm) and 316 °C (27.1 ppm)	
Gas-8	NO ₂ in H ₂ O	313 °C (20.3 ppm)	327 °C (40.2 ppm)	- (-)	
Gas-9	dry standard SCR	347 °C (9.7 ppm)	335 °C (18 ppm)	300 °C (20.5 ppm)	
Gas-10	dry fast SCR	312 °C (13.7 ppm)	333 °C (19.7 ppm)	300 °C (29.2 ppm)	
Gas-11	wet standard SCR	345 °C (10.5 ppm)	329 °C (23.9 ppm)	325 °C (24.3 ppm)	
Gas-12	wet fast SCR	310 °C (17.8 ppm)	332 °C (32 ppm)	203 °C (21.7 ppm) and 289 °C (28.7 ppm)	

Table S3. List of the temperatures corresponding to the soot oxidation onset (T_o), and the corresponding CO_x formation at T_o for all gas-soot-catalyst reactions. The gas mixture mixtures are listed in Table 1.

2.4 Summary of T_{50p} results

		Т _{50р} (°С)			
Gas mixture	Main factor	gas-soot	gas-soot-catalyst (loose)	gas-soot-catalyst (tight)	
Gas-1	inert (N ₂)	-	-	617	
Gas-2	baseline (O ₂)	629	605	515	
Gas-3	NO ₂	468	460	377	
Gas-4	NO	609	550	474	
Gas-5	NH₃	649	573	496	
Gas-6	H ₂ O	602	558	470	
Gas-7	NO in H ₂ O	595	508	453	
Gas-8	NO ₂ in H ₂ O	449	391	349	
Gas-9	dry standard SCR	648	559	467	
Gas-10	dry fast SCR	522	548	468	
Gas-11	wet standard SCR	604	532	465	
Gas-12	wet fast SCR	477	532	459	

Table S4. List of the temperatures at CO+CO₂ formation of 50 ppm (T_{50p}, °C) for all investigated gas-soot-catalyst reactions. The gas mixture mixtures were listed in Table 1.

For Gas-10 and Gas-12, even lower T_{50p} was observed in gas-soot systems compared to gas-soot-catalyst (loose) systems, the integrated CO_x formation was significantly lower, as shown in Figure 8 and Figure S5, respectively.

2.5 Influence of NO+H₂O gas mixture on soot oxidation

Figure S3. Comparison of gas evolution for NO+H₂O-containing systems: (a) CO+CO₂ formation, the N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems (loose and tight). Gas-7: 500 ppm NO, 5% H₂O, 10% O₂ in N₂ with total gas flow of 300 mL/min. 5 mg soot with 245 mg catalyst (or inert quartz sand).

2.6 Influence of NO₂+H₂O gas mixture on soot oxidation

Figure S4. Comparison of gas evolution for NO_2+H_2O -containing systems: (a) $CO+CO_2$ formation, the N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems (loose and tight). Gas-8: 500 ppm NO_2 , 5% H_2O , 10% O_2 in N_2 with total gas flow of 300 mL/min. 5 mg soot with 245 mg catalyst (or inert quartz sand).

2.7 Effect of wet standard SCR gas mixture on soot oxidation

Figure S5. Comparison of gas evolution for wet standard SCR gas-containing systems: (a) CO+CO₂ formation, N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems (loose and tight). Gas-11: 500 ppm NO, 500 ppm NH₃, 5% H₂O, 10% O₂ in N₂ with total gas flow of 300 mL/min. 5 mg soot with 245 mg catalyst (or inert quartz sand).

2.8 Effect of wet fast SCR gas mixture on soot oxidation

Figure S6. Comparison of gas evolution for wet fast SCR gas-containing systems: (a) CO+CO₂ formation, the N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems (loose and tight). Gas-12: 250 ppm NO, 250 ppm NO₂, 500 ppm NH₃, 5% H₂O, 10% O₂ in N₂ with total gas flow of 300 mL/min. 5 mg soot with 245 mg catalyst (or inert quartz sand).

2.9 Effect of soot on SCR of NO_x with NH_3

Figure S7. Comparison of NO_x conversion from (a) dry standard SCR and (b) dry fast SCR over different gas-soot-catalyst reactions. Standard SCR: 500 ppm NO, 500 ppm NH₃, 10% O₂ in N₂ with total gas flow of 300 mL/min; Fast SCR: 250 ppm NO, 250 ppm NO₂, 500 ppm NH₃, 10% O₂ in N₂ with total gas flow of 300 mL/min. 5 mg soot with 245 mg catalyst (or inert quartz sand).