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1. Experimental section

1.1 Testing protocol
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Figure S1. Testing protocol to probe gas-soot-catalyst interactions applied in the present study.
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2. Further / additional results

2.1 Catalyst characterization

s VWT

VWTi (a)

I (b)

* anatase TiO2 * anatase TiO,

=
[
:i 1 2 v polymeric vanadates
o [
o 2
2 £
§ g 985
= = i
[) i
N 1 N 1 N 1 N 1 N 1 . o i 4
20 30 40 50 60 70 80 " 300 600 900 1200
2 theta/® Raman shift / cm”

Figure S2. (a) X-ray diffraction (XRD) pattern of investigated VWTi catalyst: XRD pattern was recorded using a
Bruker Advance D8 diffractometer with Ni-filtered Cu Ka radiation (1.54060 A) in a range of 268 = 20-80° and a step
size of 0.0150°. (b) Raman spectra of investigated VWTi catalyst: Raman spectroscopy measurement was
conducted on a Renishaw inVia confocal Raman microscope. A Nd-YAG laser with a wavelength of 532 nm
(100 mw) and a 2400 I/mm grating was used. Spectra were taken with 0.5% laser power and ca. 40-50 spectra of
a small line area were measured which were averaged after cosmic ray removal using Renishaw WiRE™ software.

Table S1. The specific surface area and chemical composition of the investigated VWTi catalyst.

Elemental composition [wt.%] 2

Specific surface area
Sample Seet [m?/g] ¢ \Y W Ti

VWTi 64 1.66 7.49 50.8

! The specific surface area was measured by Nz physisorption at -196°C using multipoint measurements on a BELSORP-mini
instrument (MicrotracBEL, Osaka, Japan). Prior to the measurement, all samples were degassed in vacuum at 300 °C for 2 h.
2 Chemical composition of the catalyst is determined using inductively coupled plasma optical emission spectroscopy (ICP-
OES) on an OPTIMA 4300 DV spectrometer (PerkinElmer). The standard deviation is below 0.4 for Ti, and below 0.1 for other
elements. The V,0s and WOs concentrations are 2.96 wt.% and 10.01 wt.%, respectively, according to ICP-OES results, which

is consistent with our target composition of 3 wt.% V,05-10 wt.% WO3/TiOx.
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2.2 Summary of NTCOx results

Table S2. List of the normalized total COx formation (NTCOyx) when feeding various SCR-related gas mixtures to
different soot-catalyst contact types including soot-only, soot-catalyst in both loose and tight contact. NTCOx is a ratio
that in each condition the obtained CO+CO:2 formation was normalized to the value obtained from O2-soot reaction

(benchmark). The gas mixture mixtures are listed in Table 1.

NTCOx (normalized by non-catalytic soot oxidation in 10%02/N2)

Gas mixture Main factor
gas-soot gas-s((l)(;);-scea)talyst gas-soot-catalyst (tight)

Gas-1 inert (N2) 0.5 0.9 17
Gas-2 baseline (O2) 1.0 1.8 12.9
Gas-3 NO2 12.7 11.6 25.9
Gas-4 NO 1.3 5.2 20.4
Gas-5 NHs 0.4 3.2 18.0
Gas-6 H20 1.6 8.4 26.7
Gas-7 NO in H20 1.7 11.8 31.0
Gas-8 NO2 in H20 10.5 20.2 33.6
Gas-9 dry standard SCR 0.6 49 20.6
Gas-10 dry fast SCR 2.9 6.6 22.9
Gas-11 wet standard SCR 1.2 12.6 31.2
Gas-12 wet fast SCR 5.7 13.3 34.0
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2.3 Summary of T, results

Table S3. List of the temperatures corresponding to the soot oxidation onset (To), and the corresponding COx formation

at To for all gas-soot-catalyst reactions. The gas mixture mixtures are listed in Table 1.

To (°C) and the corresponding CO+CO2 emission (ppm)

Gas Main factor
mixture gas-soot-catalyst gas-soot-catalyst
gas-soot (loose) (tight)

Gas-1 inert (N2) -(9) 452 °C (22.7 ppm) 202 °C (6.4 ppm) and 312 °C (19 ppm)
Gas-2 baseline (O2) 346 °C (13 ppm) 329 °C (28.5 ppm) 203 °C (13.6 ppm) and 329 °C (28 ppm)
Gas-3 NO2 344 °C (12 ppm) 315 °C (30.7 ppm) 204 °C (11.3 ppm) and 314 °C (32.5 ppm)
Gas-4 NO 320 °C (18 ppm) 312 °C (37 ppm) 212 °C (20 ppm) and 300 °C (40.5 ppm)
Gas-5 NHs 348 °C (7.8 ppm) 336 °C (16 ppm) 224 °C (9.5 ppm) and 337 °C (23.3 ppm)
Gas-6 H20 338 °C (13 ppm) 310 °C (23.1 ppm) 203 °C (12.9 ppm) and 334 °C (32.5 ppm)
Gas-7 NO in H20 341 °C (11.2 ppm) 331 °C (25.9 ppm) 217 °C (13 ppm) and 316 °C (27.1 ppm)
Gas-8 NOz in H20 313 °C (20.3 ppm) 327 °C (40.2 ppm) -(-)
Gas-9 dry standard SCR 347 °C (9.7 ppm) 335 °C (18 ppm) 300 °C (20.5 ppm)
Gas-10 dry fast SCR 312 °C (13.7 ppm) 333 °C (19.7 ppm) 300 °C (29.2 ppm)
Gas-11  wet standard SCR 345 °C (10.5 ppm) 329 °C (23.9 ppm) 325 °C (24.3 ppm)
Gas-12  wet fast SCR 310 °C (17.8 ppm) 332 °C (32 ppm) 203 °C (21.7 ppm) and 289 °C (28.7 ppm)
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2.4 Summary of Tsop results

Table S4. List of the temperatures at CO+COz formation of 50 ppm (Tsop, °C) for all investigated gas-soot-catalyst

reactions. The gas mixture mixtures were listed in Table 1.

Tsop (°C)

Gas mixture Main factor gas-soot-catalyst gas-soot-catalyst

gas-soot (loose) (tight)
Gas-1 inert (N2) - - 617
Gas-2 baseline (O2) 629 605 515
Gas-3 NO2 468 460 377
Gas-4 NO 609 550 474
Gas-5 NHs 649 573 496
Gas-6 H20 602 558 470
Gas-7 NO in H20 595 508 453
Gas-8 NO:2 in H20 449 391 349
Gas-9 dry standard SCR 648 559 467
Gas-10 dry fast SCR 522 548 468
Gas-11 wet standard SCR 604 532 465
Gas-12 wet fast SCR 477 532 459

For Gas-10 and Gas-12, even lower Tsop was observed in gas-soot systems compared to gas-soot-catalyst (loose)
systems, the integrated COx formation was significantly lower, as shown in Figure 8 and Figure S5, respectively.
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2.5 Influence of NO+H:0 gas mixture on soot oxidation
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Figure S3. Comparison of gas evolution for NO+H20-containing systems: (a) CO+CO:z formation, the
N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems
(loose and tight). Gas-7: 500 ppm NO, 5% H20, 10% Oz in N2 with total gas flow of 300 mL/min. 5 mg soot with

245 mg catalyst (or inert quartz sand).
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2.6 Influence of NO2+H.0 gas mixture on soot oxidation
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Figure S4. Comparison of gas evolution for NO2+H20-containing systems: (a) CO+CO2 formation, the
N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems
(loose and tight). Gas-8: 500 ppm NOz2, 5% H20, 10% Oz in N2 with total gas flow of 300 mL/min. 5 mg soot with

245 mg catalyst (or inert quartz sand).

S9



2.7 Effect of wet standard SCR gas mixture on soot oxidation
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Figure S5. Comparison of gas evolution for wet standard SCR gas-containing systems: (a) CO+CO- formation,
N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems
(loose and tight). Gas-11: 500 ppm NO, 500 ppm NHs, 5% H20, 10% Oz in N2 with total gas flow of 300 mL/min. 5

mg soot with 245 mg catalyst (or inert quartz sand).

S10



2.8 Effect of wet fast SCR gas mixture on soot oxidation
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Figure S6. Comparison of gas evolution for wet fast SCR gas-containing systems: (a) CO+CO: formation, the
N-containing gases formation from (b) gas-soot system, (c) gas-catalyst system and (d) gas-soot-catalyst systems
(loose and tight). Gas-12: 250 ppm NO, 250 ppm NO2, 500 ppm NHs, 5% H20, 10% O2 in N2 with total gas flow of
300 mL/min. 5 mg soot with 245 mg catalyst (or inert quartz sand).
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2.9 Effect of soot on SCR of NO, with NH;
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Figure S7. Comparison of NOx conversion from (a) dry standard SCR and (b) dry fast SCR over different
gas-soot-catalyst reactions. Standard SCR: 500 ppm NO, 500 ppm NHz, 10% Oz in Nz with total gas flow of

300 mL/min; Fast SCR: 250 ppm NO, 250 ppm NOz, 500 ppm NHs, 10% Oz in N2 with total gas flow of 300 mL/min.
5 mg soot with 245 mg catalyst (or inert quartz sand).
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