Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information for:

CO₂ Methanation Reaction Pathways over Unpromoted and NaNO₃-Promoted Ru/Al₂O₃ Catalysts

Sang Jae Park,¹ Xiang Wang,² Madelyn R. Ball,¹ Laura Proano,¹ Zili Wu,² Christopher W. Jones¹*

¹School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332, USA

²Chemical Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA

*Email: cjones@chbe.gatech.edu

I. Supplementary data

Figure S1. TEM images of (a) 1%Ru/Al₂O₃, (b) 5%Ru/Al₂O₃, (c) NaNO₃/1%Ru/Al₂O₃, and (d) NaNO₃/5%Ru/Al₂O₃.

Table S1. Metal dispersion of different catalysts measured by CO chemisorption, assuming stoichiometry of Ru/CO = 1.

	Dispersion - CO
	chemisorption (%)
1% Ru/Al ₂ O ₃	9.3
5% Ru/Al ₂ O ₃	8.6
NaNO ₃ /1% Ru/Al ₂ O ₃	5.3
NaNO ₃ /5% Ru/Al ₂ O ₃	4.6

Figure S2. DRIFT spectra taken over 1% Ru/Al₂O₃ under 5%CO₂/20%H₂/N₂ flow at 40 mL/min at temperatures of 50 °C (black), 100 °C (red), 200 °C (blue), 300 °C (pink) in the wavelength range of (a) 1200 cm⁻¹ to 1800 cm⁻¹, (b) 1825 cm⁻¹ to 2150 cm⁻¹, and (c) 2650 cm⁻¹ to 3150 cm⁻¹.

Figure S3. DRIFT spectra taken over NaNO₃/1% Ru/Al₂O₃ under 5%CO₂/20%H₂/N₂ flow at 40 mL/min at temperatures of 50 °C (black), 100 °C (red), 200 °C (blue), 300 °C (pink) at a wavelength range of (a) 1200 cm⁻¹ to 1800 cm⁻¹, (b) 1825 cm⁻¹ to 2150 cm⁻¹, and (c) 2650 cm⁻¹ to 3150 cm⁻¹.

Figure S4. *In situ* DRIFT spectra taken over 1% Ru/Al₂O₃ catalysts at a wavelength range of (a) 1200 cm⁻¹ to 1800 cm⁻¹, (b) 1850 cm⁻¹ to 2100 cm⁻¹, and (c) 2800 cm⁻¹ to 3100 cm⁻¹ at a temperature of 260 °C under flow of 5% $^{12}CO_2/20\%$ H₂/N₂ (black, thickened) and after the switch to 5% $^{13}CO_2/20\%$ H₂/N₂ flow. (28 s (orange), 56 s (blue), 85 s (pink), 113 s (green), and 8 min (red, thickened) after the switch).

Figure S5. (a) Change in normalized DRIFT spectral intensity of observed surface species and (b) change in normalized mass spectroscopy intensity of ${}^{12}CO_2$, ${}^{13}CO_2$, ${}^{12}CH_4$, and ${}^{13}CH_4$, after switching from 10% ${}^{12}CO_2/40\%$ H₂/He flow to 10% ${}^{13}CO_2/40\%$ H₂/He flow over 1%Ru/Al₂O₃ catalyst at a temperature of 260 °C. Total flow rate was constant at 40 mL/min.

Figure S6. *In situ* DRIFT spectra taken over NaNO₃/Al₂O₃ catalysts at wavenumber range of 1200 cm⁻¹ to 1800 cm⁻¹ at temperature of 260 °C under flow of 5% ¹²CO₂/20% H₂/N₂ (black, thickened) and after switch to He flow at constant flow rate of 40 mL/min (taken every 1 min after the switch).

Figure S7. In situ DRIFT spectra taken over NaNO₃/1% Ru/Al₂O₃ catalysts at a wavelength range of (a) 1200 cm⁻¹ to 1800 cm⁻¹, (b) 1850 cm⁻¹ to 2100 cm⁻¹, and (c) 2800 cm⁻¹ to 3100 cm⁻¹ at a temperature of 260 °C under a flow of 5% 12 CO₂/20% H₂/N₂ (black, thickened) and after switch

to 5% $^{13}CO_2/20\%$ H₂/N₂ flow. (28 s (orange), 56 s (blue), 85 s (pink), 113 s (green), and 8 min (red, thickened) after the switch).

Figure S8. (a) Change in normalized DRIFT spectral intensity of observed surface species and (b) change in normalized mass spectroscopy intensity of ${}^{12}CO_2$, ${}^{13}CO_2$, ${}^{12}CH_4$, and ${}^{13}CH_4$, after switching from 10% ${}^{12}CO_2/40\%$ H₂/He flow to 10% ${}^{13}CO_2/40\%$ H₂/He flow over NaNO₃/1%Ru/Al₂O₃ catalysts at a temperature of 260 °C. Total flow rate was constant at 40 mL/min.

II. Derivation of Rate Equations and Kinetic Fittings over Different Catalysts

$\frac{d\theta_{OH}}{dt} = r_4 - r_{-4} + r_5 - r_{10} = 0$	Eq.S2-1
$\frac{d\theta_{CO}}{dt} = r_4 - r_{-4} - r_5 = 0$	Eq.S2-2
$2r_5 = r_{10}$	Eq.S2-3
$\theta_{OH} = \frac{2k_5}{k_{10}}\theta_{CO}$	Eq.S2-4
$\theta_{H} = \theta_{*} \sqrt{K_{1} P_{H_{2}}}$	Eq.S2-5
$\theta_{CO_2} = \frac{K_3[CO_3H\#]\theta_*}{[OH\#]} = \frac{K_3K_2P_{CO_2}[OH\#]\theta_*}{[OH\#]} = \theta_*K_3K_2P_{CO_2}$	Eq.S2-6
$\theta_{CO} = \frac{K_4 \theta_{CO_2} \theta_H}{\theta_{OH}} = \theta_* \sqrt{\frac{\left(k_{10} K_4 K_3 K_2 K_1^{\frac{1}{2}}\right)}{2k_5}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{1}{4}}$	Eq.S2-7
$\theta_{OH} = \theta_* \sqrt{\frac{\left(2k_5 K_4 K_3 K_2 K_1^{\frac{1}{2}}\right)}{k_{10}}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{1}{4}}$	Eq.S2-8
$1 = \theta_* + \theta_H + \theta_{CO_2} + \theta_{CO} + \theta_{OH}$	Eq.S2-9
$\theta_{*} = \frac{1}{1 + \sqrt{K_{1}P_{H_{2}}} + K_{3}K_{2}P_{CO_{2}} + \sqrt{K_{4}K_{3}K_{2}K_{1}^{\frac{1}{2}}P_{CO_{2}}^{\frac{1}{2}}P_{H_{2}}^{\frac{1}{4}}(\sqrt{\frac{k_{10}}{2k_{5}}} + \sqrt{\frac{2k_{5}}{k_{10}}})}$	Eq.S2-10
$r_5 = k_5 \theta_{CO} \theta_H$	Eq.S2-11
$r_{5} = \frac{\sqrt{\frac{\left(k_{5}k_{10}K_{4}K_{3}K_{2}K_{1}^{\frac{3}{2}}\right)}{2}}P_{CO_{2}}^{\frac{1}{2}}P_{H_{2}}^{\frac{3}{4}}}{\left(1 + \sqrt{K_{1}P_{H_{2}}} + K_{3}K_{2}P_{CO_{2}} + \sqrt{K_{4}K_{3}K_{2}K_{1}^{\frac{1}{2}}}P_{CO_{2}}^{\frac{1}{2}}P_{H_{2}}^{\frac{1}{4}}\left(\sqrt{\frac{k_{10}}{2k_{5}}} + \sqrt{\frac{2k_{5}}{k_{10}}}\right)\right)^{2}}$	Eq.S2-12

Table S2. Rate law derivation for the Ru/Al₂O₃ catalyst for reaction sequence shown in Table 2.

Table S3. Calculated surface coverages of reaction intermediates over 1% Ru/Al_2O_3 catalysts resulted from regression of experimental data to Eq.(3).

Pco2 (kPa)	Рн2 (kPa)	Ө_Н	θ_CO2	θ_CO	Ө_ОН	θ*
1.01E+01	4.05E+01	3.39E-01	2.45E-05	2.56E-01	3.91E-03	4.02E-01
2.03E+01	4.05E+01	3.06E-01	4.42E-05	3.26E-01	5.00E-03	3.63E-01
3.04E+01	4.05E+01	2.85E-01	6.17E-05	3.72E-01	5.70E-03	3.38E-01
4.05E+01	4.05E+01	2.69E-01	7.78E-05	4.06E-01	6.22E-03	3.19E-01
1.01E+01	2.03E+01	2.79E-01	2.85E-05	2.50E-01	3.83E-03	4.68E-01
2.03E+01	2.03E+01	2.52E-01	5.16E-05	3.20E-01	4.90E-03	4.23E-01
3.04E+01	2.03E+01	2.35E-01	7.21E-05	3.65E-01	5.59E-03	3.94E-01
4.05E+01	2.03E+01	2.22E-01	9.09E-05	3.99E-01	6.11E-03	3.73E-01
2.03E+01	3.04E+01	2.83E-01	4.72E-05	3.24E-01	4.97E-03	3.88E-01
2.03E+01	5.07E+01	3.24E-01	4.19E-05	3.27E-01	5.01E-03	3.44E-01
4.05E+01	3.04E+01	2.49E-01	8.31E-05	4.04E-01	6.18E-03	3.41E-01
4.05E+01	5.07E+01	2.85E-01	7.37E-05	4.07E-01	6.23E-03	3.02E-01

Table S4. Calculated surface coverages of reaction intermediates over 5% Ru/Al_2O_3 catalystsresulted from regression of experimental data to Eq.(3).

Pco2 (kPa)	Рн2 (kPa)	Ө_Н	θ_CO2	θ_СО	θ_ОН	θ*
1.01E+01	4.05E+01	1.78E-01	3.80E-05	2.29E-01	3.77E-03	5.89E-01
2.03E+01	4.05E+01	1.62E-01	6.94E-05	2.95E-01	4.87E-03	5.38E-01
3.04E+01	4.05E+01	1.52E-01	9.75E-05	3.39E-01	5.58E-03	5.04E-01
4.05E+01	4.05E+01	1.44E-01	1.23E-04	3.71E-01	6.12E-03	4.78E-01
1.01E+01	2.03E+01	1.38E-01	4.18E-05	2.11E-01	3.48E-03	6.47E-01
2.03E+01	2.03E+01	1.27E-01	7.67E-05	2.74E-01	4.52E-03	5.94E-01
3.04E+01	2.03E+01	1.19E-01	1.08E-04	3.16E-01	5.21E-03	5.59E-01
4.05E+01	2.03E+01	1.14E-01	1.38E-04	3.48E-01	5.73E-03	5.33E-01
2.03E+01	3.04E+01	1.47E-01	7.25E-05	2.87E-01	4.73E-03	5.61E-01
2.03E+01	5.07E+01	1.75E-01	6.70E-05	3.01E-01	4.97E-03	5.19E-01
4.05E+01	3.04E+01	1.31E-01	1.29E-04	3.62E-01	5.97E-03	5.01E-01
4.05E+01	5.07E+01	1.55E-01	1.19E-04	3.78E-01	6.23E-03	4.60E-01

Table S5. Rate law derivation for $NaNO_3/Ru/Al_2O_3$ catalyst for reaction sequence shown in Table4.

$\frac{d\theta_{CO}}{dt} = r_4 - r_{-4} - r_5 = 0$	Eq.S5-1
$\frac{d\theta_{OH}}{dt} = r_4 - r_{-4} + r_5 - r_{10} = 0$	Eq.85-2
$\theta_{OH} = \frac{2k_5}{k_{10}} \theta_{CO}$	Eq.S5-3
$\frac{d\theta_c}{dt} = r_5 - r_6 + r_{-6} = 0$	Eq.85-4
$\frac{d\theta_{CH}}{dt} = r_6 - r_{-6} - r_7 + r_{-7} = 0$	Eq.85-5
$\frac{d\theta_{CH_2}}{dt} = r_7 - r_{-7} - r_8 + r_{-8} = 0$	Eq.85-6
$\frac{d\theta_{CH_3}}{dt} = r_8 - r_{-8} - r_9 = 0$	Eq.85-7
$\theta_{CO} = \frac{k_9}{k_5} \theta_{CH_3}$	Eq.S5-8
$\theta_H = \theta_* \sqrt{K_1 P_{H_2}}$	Eq.S5-9
$\theta_{HC00} = \frac{K_3[CO_3^{\#}]\theta_H}{[O^{\#}]} = \frac{K_3K_2P_{CO_2}[O^{\#}]\theta_H}{[O^{\#}]} = \theta_*K_3K_2K_1^{\frac{1}{2}}P_{CO_2}P_{H_2}^{\frac{1}{2}}$	Eq.S5- 10
$\theta_{CO} = \frac{K_4 \theta_{HCOO} \theta_*}{\theta_{OH}} = \theta_* \sqrt{\frac{\left(k_{10} K_4 K_3 K_2 K_1^{\frac{1}{2}}\right)}{2k_5}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{1}{4}}$	Eq.S5- 11
$\theta_{CH_3} = \frac{\theta_*}{k_9} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2 K_1^{\frac{1}{2}}\right)}{2}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{1}{4}}$	Eq.S5- 12
$\theta_{OH} = \theta_* \sqrt{\frac{\left(2k_5 K_4 K_3 K_2 K_1^{\frac{1}{2}}\right)}{k_{10}}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{1}{4}}$	Eq.S5- 13
$\theta_{CH_2} = \frac{\theta_{CH_3}\theta_*}{K_8\theta_H} = \frac{\theta_*}{k_9K_8} \sqrt{\frac{\frac{(k_5k_{10}K_4K_3K_2)}{\frac{1}{2}}}{2K_1^{\frac{1}{2}}}} P_{CO_2}P_{H_2}^{-\frac{1}{4}}$	Eq.S5- 14

$$\theta_{CH} = \frac{\theta_{CH_2}\theta_+}{K_7\theta_H} = \frac{\theta_+}{k_9K_7K_8} \sqrt{\frac{(k_5k_{10}K_4K_3K_2)}{2K_1^2}} \frac{1}{2} \frac{1}{c_0^2} p_{H_2}^{-\frac{3}{4}} = \frac{Eq.SS-15}{15}$$

$$\theta_C = \frac{\theta_{CH}\theta_+}{K_8\theta_H} = \frac{\theta_+}{k_9K_6K_7K_8} \sqrt{\frac{(k_5k_{10}K_4K_3K_2)}{2K_1^2}} \frac{1}{2} \frac{1}{c_0^2} p_{H_2}^{-\frac{5}{4}} = \frac{Eq.SS-16}{16}$$

$$1 = \theta_+ + \theta_H + \theta_{HCOO} + \theta_{CO} + \theta_{OH} + \theta_C + \theta_{CH_2} + \theta_{CH_3} = Eq.SS-16$$

$$1 = \theta_+ + \theta_H + \theta_{HCOO} + \theta_{CO} + \theta_{OH} + \theta_C + \theta_{CH_2} + \theta_{CH_3} = Eq.SS-16$$

$$1 = \frac{\theta_+}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{2}}P_{CO_2}P_{H_2}^{\frac{1}{2}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{2}}P_{CO_2}^{\frac{1}{2}}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{2}}P_{CO_2}P_{H_2}^{\frac{1}{2}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{2}}P_{CO_2}^{\frac{1}{2}}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{2}}P_{CO_2}P_{H_2}^{\frac{1}{2}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{2}}P_{CO_2}^{\frac{1}{2}}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{2}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{2}}P_{CO_2}^{\frac{1}{4}}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{4}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{2}}P_{CO_2}^{\frac{1}{4}}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{4}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}P_{CO_2}^{\frac{1}{4}}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{4}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}P_{CO_2}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{4}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}P_{CO_2}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{4}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}}P_{CO_2}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{4}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}}P_{CO_2}P_{H_3}^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_1P_{H_2}} + K_3K_2k_1^{\frac{1}{4}}P_{CO_2}P_{H_2}^{\frac{1}{4}} + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}} = \frac{Eq.SS-16}{1 + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}} + \frac{Eq.SS-16}{1 + \sqrt{K_4K_3K_2K_1^{\frac{1}{4}}} + \frac{Eq.S}{1 + \sqrt{K_4K_3K_2K$$

Table S6. Calculated surface coverages of reaction intermediates over $NaNO_3/1\% Ru/Al_2O_3$ catalysts resulted from regression of experimental data to Eq.(4).

P_CO2	P_H2	Ө_Н	θ_ΗCOO	θ_CO	θ_C	θ_СН	θ_CH2	Ө_СНЗ	θ_ОН	θ*
1.01E+01	4.05E+01	2.97E-01	2.01E-05	7.49E-03	1.94E-01	1.80E-04	1.34E-03	4.93E-01	4.54E-04	0.0063376
2.03E+01	4.05E+01	2.30E-01	3.11E-05	8.22E-03	2.13E-01	1.98E-04	1.47E-03	5.41E-01	4.98E-04	0.0049181
3.04E+01	4.05E+01	1.97E-01	3.99E-05	8.59E-03	2.23E-01	2.07E-04	1.53E-03	5.65E-01	5.21E-04	0.0041968
4.05E+01	4.05E+01	1.75E-01	4.73E-05	8.82E-03	2.29E-01	2.12E-04	1.57E-03	5.81E-01	5.35E-04	0.0037350
1.01E+01	2.03E+01	1.91E-01	1.29E-05	5.71E-03	4.20E-01	2.75E-04	1.44E-03	3.76E-01	3.47E-04	0.0057519
2.03E+01	2.03E+01	1.43E-01	1.93E-05	6.06E-03	4.45E-01	2.92E-04	1.53E-03	3.99E-01	3.68E-04	0.0043153
3.04E+01	2.03E+01	1.20E-01	2.43E-05	6.23E-03	4.58E-01	3.00E-04	1.57E-03	4.10E-01	3.78E-04	0.0036213
4.05E+01	2.03E+01	1.06E-01	2.86E-05	6.33E-03	4.66E-01	3.05E-04	1.60E-03	4.17E-01	3.84E-04	0.0031889
2.03E+01	3.04E+01	1.95E-01	2.63E-05	7.47E-03	2.99E-01	2.40E-04	1.54E-03	4.92E-01	4.53E-04	0.0048051
2.03E+01	5.07E+01	2.56E-01	3.46E-05	8.63E-03	1.60E-01	1.66E-04	1.38E-03	5.68E-01	5.24E-04	0.0048856
4.05E+01	3.04E+01	1.46E-01	3.96E-05	7.93E-03	3.17E-01	2.55E-04	1.64E-03	5.22E-01	4.81E-04	0.0036088
4.05E+01	5.07E+01	1.96E-01	5.30E-05	9.34E-03	1.74E-01	1.80E-04	1.49E-03	6.15E-01	5.67E-04	0.0037402

Table S7. Calculated surface coverages of reaction intermediates over NaNO $_3/5\%$ Ru/Al $_2O_3$ catalysts resulted from regression of experimental data to Eq.(4).

P_CO2	P_H2	0_Н	θ_НСОО	θ_CO	θ_C	θ_СН	θ_CH2	Ө_СНЗ	θ_ОН	θ*
1.01E+01	4.05E+01	1.84E-01	2.09E-05	6.14E-03	2.27E-01	2.09E-04	1.55E-03	5.74E-01	1.00E-03	6.56E-03
2.03E+01	4.05E+01	1.37E-01	3.13E-05	6.51E-03	2.40E-01	2.22E-04	1.64E-03	6.08E-01	1.06E-03	4.92E-03
3.04E+01	4.05E+01	1.15E-01	3.93E-05	6.68E-03	2.47E-01	2.28E-04	1.68E-03	6.24E-01	1.09E-03	4.12E-03
4.05E+01	4.05E+01	1.01E-01	4.61E-05	6.79E-03	2.51E-01	2.31E-04	1.71E-03	6.34E-01	1.11E-03	3.63E-03
1.01E+01	2.03E+01	1.11E-01	1.27E-05	4.43E-03	4.62E-01	3.02E-04	1.57E-03	4.14E-01	7.24E-04	5.63E-03
2.03E+01	2.03E+01	8.15E-02	1.85E-05	4.59E-03	4.79E-01	3.12E-04	1.63E-03	4.28E-01	7.50E-04	4.12E-03
3.04E+01	2.03E+01	6.76E-02	2.31E-05	4.66E-03	4.86E-01	3.17E-04	1.66E-03	4.35E-01	7.62E-04	3.42E-03
4.05E+01	2.03E+01	5.91E-02	2.69E-05	4.70E-03	4.91E-01	3.20E-04	1.67E-03	4.39E-01	7.69E-04	2.99E-03
2.03E+01	3.04E+01	1.14E-01	2.60E-05	5.81E-03	3.30E-01	2.64E-04	1.69E-03	5.42E-01	9.49E-04	4.71E-03
2.03E+01	5.07E+01	1.55E-01	3.52E-05	6.93E-03	1.83E-01	1.89E-04	1.56E-03	6.47E-01	1.13E-03	4.95E-03
4.05E+01	3.04E+01	8.36E-02	3.80E-05	6.02E-03	3.42E-01	2.73E-04	1.75E-03	5.62E-01	9.84E-04	3.45E-03
4.05E+01	5.07E+01	1.15E-01	5.22E-05	7.27E-03	1.92E-01	1.98E-04	1.64E-03	6.79E-01	1.19E-03	3.67E-03

III. Consideration of Different Reaction Sequences for NaNO₃/Ru/Al₂O₃ catalysts

A reaction pathway over NaNO₃/Ru/Al₂O₃ catalysts that does not include formate species as a spectator intermediate, as shown in Table S8, was considered as well. The reaction pathway differs from the reaction pathway shown in **Table 4** in that a transfer of adsorbed CO₂ on an O# site to the Ru metal site near the metal-support interface to form CO₂* is assumed (Table S8, step 3), which is followed by a reaction of CO_2^* with H* to form linear carbonyl species (Table S8, step 4). The derivation of the rate law for this reaction pathway is shown in Table S9. Experimental data were fit to the derived rate law, as shown in Figure S9, and the simulated surface coverages obtained from kinetic fitting are shown in Table S10 and Table S11. Similar to the reaction sequence shown in Table 4, the reaction pathway that does not contain formate as a reaction intermediate also showed a good fit between experimental rates and calculated rates, as shown in Figure S9. However, despite the good fit between experimental and calculated rates, the observation of formate peaks at 1600 cm⁻¹ and 1349 cm⁻¹ showing a rapid decrease after the switch to ¹³CO₂ flow (Figure 6) and the similar decomposition rate for ¹²CO* and H¹²COO* IR peaks observed in the SSITKA experiment (Figure 7), suggests that the reaction pathway in Table 4 is more likely the methanation reaction pathway over NaNO₃/Ru/Al₂O₃ catalysts.

Step	Reaction
1	$H_2(g) + 2^* \leftrightarrow 2H^*$
2	$CO_2(g) + O\# \leftrightarrow CO_3\#$
3	$CO_3 # + * \leftrightarrow CO_2 * + O #$
4	$\mathrm{CO}_2^* + \mathrm{H}^* \leftrightarrow \mathrm{CO}^* + \mathrm{OH}^*$
5 (irreversible)	$CO^* + H^* \rightarrow C^* + OH^*$
6	$C^* + H^* \leftrightarrow CH^* + *$
7	$CH^* + H^* \leftrightarrow CH_2^* + *$
8	$CH_2 + * + H^* \leftrightarrow CH_3^* + *$
9 (irreversible)	$\mathrm{CH}_3{}^* + \mathrm{H}^* \to \mathrm{CH}_4{}^* + {}^*$
10 (irreversible)	$OH^* + H^* \rightarrow H_2O^* + *$
11	$CH_4^* \leftrightarrow CH_4(g) + *$
12	$H_2O^* \leftrightarrow H_2O(g) + *$

Table S8. Proposed elementary steps for CO_2 methanation over $NaNO_3/Ru/Al_2O_3$ catalysts assuming formate species are not reaction intermediates.

Table S9. Rate law derivation for reaction sequence shown in Table S8.

$\frac{d\theta_{CO}}{dt} = r_4 - r_{-4} - r_5 = 0$	Eq.S9-1
$\frac{d\theta_{OH}}{dt} = r_4 - r_{-4} + r_5 - r_{10} = 0$	Eq.S9-2
$\theta_{OH} = \frac{2k_5}{k_{10}}\theta_{CO}$	Eq.S9-3
$\frac{d\theta_c}{dt} = r_5 - r_6 + r_{-6} = 0$	Eq.S9-4
$\frac{d\theta_{CH}}{dt} = r_6 - r_7 + r_7 = 0$	Eq.S9-5
$\frac{d\theta_{CH_2}}{dt} = r_7 - r_{-7} - r_8 + r_{-8} = 0$	Eq.S9-6
$\frac{d\theta_{CH_3}}{dt} = r_8 - r_{-8} - r_9 = 0$	Eq.S9-7
$\theta_{CO} = \frac{k_9}{k_5} \theta_{CH_3}$	Eq.S9-8
$\theta_{H} = \theta_{*} \sqrt{K_{1} P_{H_{2}}}$	Eq.S9-9
$\theta_{CO_2} = \frac{K_3[CO_3^{\#}]\theta_*}{[O^{\#}]} = \frac{K_3K_2P_{CO_2}[O^{\#}]\theta_*}{[O^{\#}]} = \theta_*K_3K_2P_{CO_2}$	Eq.S9- 10

$$\begin{split} \theta_{CO} &= \frac{K_4 \theta_{CO_2} \theta_H}{\theta_{OH}} = \theta_* \sqrt{\frac{\left(k_{10} K_4 K_3 K_2 k_1^2\right)}{2k_5}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{2}} \\ \theta_{CH_3} &= \frac{\theta_*}{k_9} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2 k_1^2\right)}{2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{2}} \\ \theta_{OH} &= \theta_* \sqrt{\frac{\left(2k_5 K_4 K_3 K_2 k_1^2\right)}{2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{CH_2} &= \frac{\theta_{CH_3} \theta_*}{K_8 \theta_H} = \frac{\theta_*}{k_9 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{CH_2} &= \frac{\theta_{CH_3} \theta_*}{K_8 \theta_H} = \frac{\theta_*}{k_9 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{CH_2} &= \frac{\theta_{CH_3} \theta_*}{K_8 \theta_H} = \frac{\theta_*}{k_9 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{CH} &= \frac{\theta_{CH_2} \theta_*}{k_9 K_8 \sqrt{k_8}} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{CH} &= \frac{\theta_{CH_3} \theta_*}{k_9 K_8 \sqrt{k_8}} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{CH} &= \frac{\theta_{CH_3} \theta_*}{k_9 K_8 \sqrt{k_8}} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{CH} \theta_*}{k_9 K_8 K_7 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{CH} \theta_*}{k_9 K_8 K_7 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{CH} \theta_*}{k_9 K_8 K_7 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{CH} \theta_*}{k_9 K_8 K_7 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{CH} \theta_*}{k_9 K_8 K_7 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{CH} \theta_*}{k_9 K_8 K_7 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_3 K_2\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{C} \theta_{C} \theta_*}{k_9 K_8 K_8 K_8 K_8} \sqrt{\frac{\left(k_5 k_{10} K_4 K_8 K_8\right)}{2k_1^2}} p_{CO_2}^{\frac{1}{2}} p_{H_2}^{\frac{1}{4}} \\ \theta_{C} &= \frac{\theta_{C} \theta_{C} \theta_*}{k_9 K_8 K_8 K_8 K_8} \sqrt{\frac{\left(k_5 K_{10} K_8 K_8 K_8\right)}{2k_1^2}} p_{CO_2}^{\frac{1}$$

$$\theta_{\star} = \frac{1}{1 + \sqrt{K_{1}P_{H_{2}}} + K_{3}K_{2}P_{CO_{2}} + \sqrt{K_{4}K_{3}K_{2}R_{1}^{\frac{1}{2}}P_{CO_{2}}^{\frac{1}{2}}P_{H_{2}}^{\frac{1}{4}}} \left(\sqrt{\frac{k_{10}}{2k_{5}}} + \sqrt{\frac{2k_{5}}{k_{10}}} \right)^{\frac{1}{8}}$$

$$F_{9} = k_{9}\theta_{CH_{3}}\theta_{H}$$

$$F_{9} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}K_{3}K_{2}}{2}}}{\sqrt{\frac{k_{5}k_{10}K_{4}K_{3}K_{2}}{2}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}K_{3}K_{2}}{2}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}K_{3}K_{2}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}K_{3}K_{2}}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}K_{3}K_{2}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}K_{3}}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}K_{4}K_{4}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}K_{4}K_{4}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}}}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}}}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}}}} = \frac{\sqrt{\frac{k_{5}k_{10}K_{4}}}}{\sqrt{\frac{k_{5}k_{10}K_{4}}}}} = \frac{\sqrt$$

Figure S9. Calculated TOFs vs experimental TOFs for (a) $NaNO_3/1\%$ Ru/Al₂O₃ and (b) $NaNO_3/5\%$ Ru/Al₂O₃ according to rate law derived in Eq.S9-20.

Table S10. Calculated kinetic constants for $NaNO_3/1\%$ Ru/Al₂O₃ and $NaNO_3/5\%$ Ru/Al₂O₃ catalysts resulted from regression of experimental data to Eq.S9-20.

Kinetic constants	NaNO ₃ /1% Ru/Al ₂ O ₃	NaNO ₃ /5% Ru/Al ₂ O ₃
K_1 (kPa ⁻¹)	791 ± 48.8	111 ± 18.6
$K_2 K_3 (kPa^{-1})$	$6.24 \ge 10^{-6} \pm 5.67 \ge 10^{-7}$	$1.49 \ge 10^{-5} \pm 3.08 \ge 10^{-6}$
K_4	6.24 ± 0.56	1.48 ± 0.329
$k_5 (s^{-1})$	2504 ± 225	6293 ± 1776
K ₆	$1.21 \ge 10^{-5} \pm 4.49 \ge 10^{-7}$	$9.08 \ge 10^{-5} \pm 1.99 \ge 10^{-5}$
K ₇	$6.06 \ge 10^{-3} \pm 2.24 \ge 10^{-4}$	$0.0135 \pm 1.97 \text{ x } 10^{-3}$
K_8	6.03 ± 0.226	7.24 ± 4.95
$k_9 (s^{-1})$	1.78 ± 0.0901	4.14 ± 0.311
$k_{10} (s^{-1})$	3135 ± 283	$1.56 \ge 10^4 \pm 3310$

Table S11. Calculated surface coverages of reaction intermediates over NaNO₃/1% Ru/Al₂O₃ catalysts resulted from regression of experimental data to Eq.S9-20.

P_CO2	P_H2	Ө_Н	θ_CO2	θ_CO	θ_C	θ_СН	θ_CH2	Ө_СНЗ	θ_ОН	θ*
1.01E+01	4.05E+01	3.02E-01	1.07E-07	3.55E-04	1.95E-01	4.24E-04	4.60E-04	4.99E-01	5.67E-04	1.69E-03
2.03E+01	4.05E+01	2.34E-01	1.66E-07	3.89E-04	2.14E-01	4.65E-04	5.05E-04	5.48E-01	6.22E-04	1.31E-03
3.04E+01	4.05E+01	2.00E-01	2.12E-07	4.07E-04	2.24E-01	4.86E-04	5.28E-04	5.73E-01	6.50E-04	1.12E-03
4.05E+01	4.05E+01	1.78E-01	2.52E-07	4.18E-04	2.30E-01	5.00E-04	5.42E-04	5.89E-01	6.68E-04	9.94E-04
1.01E+01	2.03E+01	1.94E-01	9.69E-08	2.71E-04	4.21E-01	6.47E-04	4.97E-04	3.81E-01	4.33E-04	1.53E-03
2.03E+01	2.03E+01	1.45E-01	1.45E-07	2.87E-04	4.47E-01	6.86E-04	5.27E-04	4.05E-01	4.59E-04	1.15E-03
3.04E+01	2.03E+01	1.22E-01	1.83E-07	2.95E-04	4.59E-01	7.05E-04	5.41E-04	4.16E-01	4.72E-04	9.63E-04
4.05E+01	2.03E+01	1.07E-01	2.15E-07	3.00E-04	4.67E-01	7.17E-04	5.50E-04	4.23E-01	4.80E-04	8.48E-04
2.03E+01	3.04E+01	1.98E-01	1.62E-07	3.54E-04	3.00E-01	5.64E-04	5.30E-04	4.99E-01	5.66E-04	1.28E-03
2.03E+01	5.07E+01	2.60E-01	1.64E-07	4.09E-04	1.61E-01	3.91E-04	4.74E-04	5.76E-01	6.53E-04	1.30E-03
4.05E+01	3.04E+01	1.49E-01	2.43E-07	3.76E-04	3.18E-01	5.99E-04	5.63E-04	5.30E-01	6.01E-04	9.60E-04
4.05E+01	5.07E+01	1.99E-01	2.52E-07	4.43E-04	1.74E-01	4.23E-04	5.13E-04	6.23E-01	7.08E-04	9.95E-04

Table S12. Calculated surface coverages of reaction intermediates over NaNO₃/5% Ru/Al₂O₃ catalysts resulted from regression of experimental data to Eq.S9-20.

P_CO2	P_H2	0_Н	θ_CO2	θ_CO	θ_C	Ө_СН	θ_CH2	Ө_СНЗ	θ_ОН	θ*
1.01E+01	4.05E+01	1.90E-01	4.27E-07	3.86E-04	2.19E-01	1.33E-03	1.21E-03	5.86E-01	3.12E-04	2.83E-03
2.03E+01	4.05E+01	1.42E-01	6.40E-07	4.09E-04	2.32E-01	1.41E-03	1.28E-03	6.21E-01	3.31E-04	2.12E-03
3.04E+01	4.05E+01	1.19E-01	8.05E-07	4.20E-04	2.38E-01	1.45E-03	1.31E-03	6.37E-01	3.40E-04	1.78E-03
4.05E+01	4.05E+01	1.05E-01	9.45E-07	4.27E-04	2.42E-01	1.47E-03	1.33E-03	6.48E-01	3.45E-04	1.57E-03
1.01E+01	2.03E+01	1.16E-01	3.70E-07	2.81E-04	4.51E-01	1.94E-03	1.24E-03	4.27E-01	2.27E-04	2.46E-03
2.03E+01	2.03E+01	8.53E-02	5.42E-07	2.92E-04	4.67E-01	2.01E-03	1.29E-03	4.42E-01	2.36E-04	1.80E-03
3.04E+01	2.03E+01	7.08E-02	6.75E-07	2.96E-04	4.74E-01	2.04E-03	1.31E-03	4.49E-01	2.39E-04	1.49E-03
4.05E+01	2.03E+01	6.19E-02	7.87E-07	2.99E-04	4.79E-01	2.06E-03	1.32E-03	4.54E-01	2.42E-04	1.31E-03
2.03E+01	3.04E+01	1.19E-01	6.16E-07	3.67E-04	3.20E-01	1.68E-03	1.32E-03	5.56E-01	2.96E-04	2.04E-03
2.03E+01	5.07E+01	1.60E-01	6.43E-07	4.35E-04	1.76E-01	1.20E-03	1.21E-03	6.59E-01	3.51E-04	2.13E-03
4.05E+01	3.04E+01	8.70E-02	9.04E-07	3.80E-04	3.31E-01	1.75E-03	1.37E-03	5.76E-01	3.07E-04	1.50E-03
4.05E+01	5.07E+01	1.19E-01	9.54E-07	4.56E-04	1.85E-01	1.26E-03	1.27E-03	6.92E-01	3.68E-04	1.58E-03

Combining observations made in our previous work, in which the carbonyl IR peaks over Ru/Al₂O₃ and NaNO₃/Ru/Al₂O₃ observed during methanation reaction conditions, and previous reports that hydrogen carbonyl species (H*CO or (2H)*CO) could be formed as reaction intermediates during CO₂ methanation, a reaction pathway that includes hydrogen carbonyl species was also considered as reaction pathway over NaNO₃/Ru/Al₂O₃ catalysts.^{1,2} This reaction sequence is shown in **Table S12**, and the derivation of the rate law for the reaction sequence is shown in **Table S13**. As observed in **Figure S10**, the hydrogen carbonyl pathway also showed a good fit of the experimental TOF values to the derived rate law for both NaNO₃/1%Ru/Al₂O₃ and NaNO₃/5%Ru/Al₂O₃ catalysts, showing slopes of nearly 1 and R² values of 0.971 and 0.984.

However, this pathway is likely not the main reaction pathway for CO₂ methanation over NaNO₃/Ru/Al₂O₃ catalysts, because the surface coverage of hydrogen is quite high, which is not consistent with the high H₂ reaction order observed for the NaNO₃/Ru/Al₂O₃ catalysts, implying low surface coverage of hydrogen. For H*CO and 2H*CO species, hydrogen atoms are directly attached to Ru active sites, and the surface coverage of H*, H*CO, and (2H)*CO combined, ranges from approximately 0.30 to 0.49 for NaNO3/1%Ru/Al2O3 and 0.21 to 0.37 for NaNO₃/5%Ru/Al₂O₃ under the given experimental conditions, as shown in **Table S14** and **Table** S15. These values are higher than the hydrogen surface coverage observed over unpromoted Ru/Al₂O₃ catalysts, as 1%Ru/Al₂O₃ showed H* surface coverages between 0.22 and 0.34, and 5% Ru/Al₂O₃ showed H* surface coverages between 0.11 and 0.18 under the given experimental conditions, as shown in Table S3 and Table S4. This higher surface coverage of hydrogen on the metal surface does not align with the implications of increased H₂ reaction orders, making the hydrogen carbonyl reaction pathway less likely. With the further information gathered from the kinetic modeling results, it is concluded that the difference in the IR spectra between 1%Ru/Al₂O₃ and NaNO₃/1%Ru/Al₂O₃ in our previous work is most likely not due to presence of hydrogen carbonyl species. Rather it is possible that higher coverage of other carbonyl species, such as dicarbonyl or tricarbonyl species, caused slight shift to higher wavenumbers for the case of the 1% Ru/Al₂O₃, as the *in situ* FTIR experiment was performed under different reaction conditions with higher CO₂ partial pressure than the conditions performed in this work.

After consideration of several different possible reaction pathways, we conclude that the reaction pathway shown in **Table 4**, which includes bidentate carbonate, formate, and linear carbonyl species as reaction intermediates and assumes an additional irreversible step of

hydrogenation of CH3* in the formation of methane, is the most representative reaction pathway

for CO₂ methanation over NaNO₃/Ru/Al₂O₃ catalysts under the conditions employed.

Step	Reaction
1	$H_2(g) + 2^* \leftrightarrow 2H^*$
2	$CO_2(g) + O\# \leftrightarrow CO_3\#$
3	$CO_3 \# + H^* \leftrightarrow HCOO^* + O \#$
4	$HCOO^* + * \leftrightarrow CO^* + OH^*$
5	$CO^* + H^* \leftrightarrow H^*CO + *$
6	$H^{*}CO + H^{*} \leftrightarrow (2H)^{*}CO + *$
7 (RDS)	$\mathrm{H}_{2}^{*}\mathrm{CO} + \mathrm{H}^{*} \rightarrow \mathrm{CH}_{2}^{*} + \mathrm{OH}^{*}$
8	$\mathrm{CH}_2^{*+*} + \mathrm{H}^* \leftrightarrow \mathrm{CH}_3^{*} + ^{*}$
9	$CH_3^* + H^* \leftrightarrow CH_4^* + *$
10	$CH_4^* \leftrightarrow CH_4(g) + *$
11 (irreversible)	$OH^* + H^* \rightarrow H_2O^* + *$
12	$H_2O^* \leftrightarrow H_2O(g) + *$

Table S13. Proposed elementary steps for CO_2 methanation over $NaNO_3/Ru/Al_2O_3$ catalysts, using hydrogen carbonyl species as reaction intermediate.

Table S14. Rate law derivation for reaction sequence shown in Table S13.

	л
$\frac{d\theta_{CO}}{dt} = r_4 - r_{-4} - r_5 + r_{-5} = 0$	Eq. S14-1
$\frac{d\theta_{H*CO}}{dt} = r_5 - r_{-5} - r_6 + r_{-6} = 0$	Eq. S14-2
$\frac{d\theta_{H_2 * CO}}{dt} = r_6 - r_{-6} - r_7 = 0$	Eq. S14-3
$\frac{d\theta_{OH}}{dt} = r_4 - r_{-4} + r_7 - r_{11} = 0$	Eq. S14-4
$\theta_{OH} = \frac{2k_7}{k_{11}} \theta_{H_2 * CO}$	Eq. S14-5
$\theta_{H} = \theta_{*} \sqrt{K_{1} P_{H_{2}}}$	Eq. S14-6

$\theta_{HC00} = \frac{K_3[CO_3^{\#}]\theta_H}{[O^{\#}]} = \frac{K_3K_2P_{CO_2}[O^{\#}]\theta_H}{[O^{\#}]} = \theta_*K_3K_2K_1^{\frac{1}{2}}P_{CO_2}P_{H_2}^{\frac{1}{2}}$	Eq. S14-7
$\theta_{CO} = \frac{K_4 \theta_{HCOO} \theta_*}{\theta_{OH}} = \theta_* \sqrt{\frac{(k_{11} K_4 K_3 K_2)}{2k_7 K_6 K_5 K_1^{\frac{1}{2}}}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{-\frac{1}{4}}$	Eq. S14-8
$\theta_{H*CO} = \frac{K_5 \theta_{CO} \theta_H}{\theta_*} = \theta_* \sqrt{\frac{\left(k_{11} K_5 K_4 K_3 K_2 K_1^{\frac{1}{2}}\right)}{2k_7 K_6}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{1}{4}}$	Eq. S14-9
$\theta_{H_2 * CO} = \frac{K_6 \theta_{H * CO} \theta_H}{\theta_*} = \theta_* \sqrt{\frac{\left(k_{11} K_6 K_5 K_4 K_3 K_2 K_1^{\frac{3}{2}}\right)}{2k_7}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{3}{4}}$	Eq. S14-10
$\theta_{OH} = \theta_* \sqrt{\frac{\left(2k_7 K_6 K_5 K_4 K_3 K_2 K_1^{\frac{3}{2}}\right)}{k_{11}}} P_{CO_2}^{\frac{1}{2}} P_{H_2}^{\frac{3}{4}}$	Eq. S14-11
$1 = \theta_* + \theta_H + \theta_{HCOO} + \theta_{CO} + \theta_{H*CO} + \theta_{H_2*CO} + \theta_{OH}$	Eq. S14-12
$\theta_{*} = \frac{1}{1 + \sqrt{K_{1}P_{H_{2}}} \left(1 + K_{3}K_{2}P_{CO_{2}}\right) + \sqrt{K_{4}K_{3}K_{2}}P_{CO_{2}}^{\frac{1}{2}} \left(\sqrt{\frac{k_{11}}{2k_{7}K_{6}K_{5}K_{1}^{\frac{1}{2}}}}\right)}$	Eq. S14-13
$r_7 = k_7 \theta_{H_2 * CO} \theta_H$	Eq. S14-14
$=\frac{\sqrt{\left(k_{7}k_{11}K_{6}K_{5}K_{4}K_{5}K_{4}K_{5}K_{4}K_{5}K_{4}K_{5}K_{4}K_{5}K_{4}K_{5}K_{4}K_{5}K_{5}K_{4}K_{5}K_{5}K_{5}K_{5}K_{5}K_{5}K_{5}K_{5$	Eq. S14-15

Figure S10. Calculated TOFs vs experimental TOFs for (a) $NaNO_3/1\%$ Ru/Al₂O₃ and (b) $NaNO_3/5\%$ Ru/Al₂O₃ using rate law derived Eq.S14-15.

Table S15. Calculated kinetic constants for $NaNO_3/1\%$ Ru/Al₂O₃ and $NaNO_3/5\%$ Ru/Al₂O₃ catalysts resulted from regression of experimental data to Eq.S14-15.

Kinetic constants	NaNO ₃ /1% Ru/Al ₂ O ₃	NaNO ₃ /5% Ru/Al ₂ O ₃
K_1 (kPa ⁻¹)	12.1 ± 0.949	0.0991 ± 0.0293
$K_2 K_3 (kPa^{-1})$	$9.02 \ge 10^{-6} \pm 1.55 \ge 10^{-6}$	$8.18 \ge 10^{-6} \pm 1.27 \ge 10^{-6}$
K4	2221 ± 350	823 ± 129
K ₅	$1.96 \ge 10^{-5} \pm 1.54 \ge 10^{-6}$	$0.0498 \pm 7.49 \ x \ 10^{-4}$
K ₆	49.0 ± 3.86	2.15 ± 0.591
$k_7(s^{-1})$	4.26 ± 0.431	16.7 ± 1.69
$k_{11}(s^{-1})$	1351 ± 541	8549 ± 1475

Table S16. Calculated surface coverages of reaction intermediates over NaNO₃/1% Ru/Al₂O₃ catalysts resulted from regression of experimental data to Eq.S14-15.

P_CO2	P_H2	Ө_Н	θ_ΗCOO	θ_CO	θ_Н*СО	θ_H2*CO	θ_ОН	θ*
10.1325	40.53	2.75E-01	2.52E-05	4.83E-01	2.10E-04	2.28E-01	1.44E-03	1.24E-02
20.265	40.53	2.12E-01	3.88E-05	5.27E-01	2.29E-04	2.49E-01	1.57E-03	9.58E-03
30.3975	40.53	1.81E-01	4.96E-05	5.50E-01	2.39E-04	2.59E-01	1.63E-03	8.16E-03
40.53	40.53	1.61E-01	5.88E-05	5.64E-01	2.45E-04	2.66E-01	1.68E-03	7.25E-03
10.1325	20.265	2.12E-01	1.94E-05	6.26E-01	1.92E-04	1.48E-01	9.30E-04	1.35E-02
20.265	20.265	1.61E-01	2.93E-05	6.70E-01	2.06E-04	1.58E-01	9.96E-04	1.02E-02
30.3975	20.265	1.35E-01	3.71E-05	6.92E-01	2.12E-04	1.63E-01	1.03E-03	8.63E-03
40.53	20.265	1.19E-01	4.37E-05	7.05E-01	2.17E-04	1.66E-01	1.05E-03	7.62E-03
20.265	30.3975	1.91E-01	3.50E-05	5.89E-01	2.22E-04	2.08E-01	1.31E-03	9.96E-03
20.265	50.6625	2.28E-01	4.17E-05	4.79E-01	2.32E-04	2.82E-01	1.78E-03	9.20E-03
40.53	30.3975	1.44E-01	5.25E-05	6.26E-01	2.35E-04	2.21E-01	1.40E-03	7.48E-03
40.53	50.6625	1.73E-01	6.33E-05	5.14E-01	2.50E-04	3.03E-01	1.91E-03	6.99E-03

Table S17. Calculated surface coverages of reaction intermediates over $NaNO_3/5\%$ Ru/Al₂O₃ catalysts resulted from regression of experimental data to Eq.S14-15.

P_CO2	P_H2	Ө_Н	θ_НСОО	θ_СО	θ_Н*СО	θ_H2*CO	θ_ОН	θ*
10.1325	40.53	1.19E-01	9.88E-06	5.36E-01	5.35E-02	2.31E-01	9.02E-04	5.95E-02
20.265	40.53	8.89E-02	1.47E-05	5.66E-01	5.64E-02	2.43E-01	9.52E-04	4.44E-02
30.3975	40.53	7.44E-02	1.85E-05	5.80E-01	5.78E-02	2.50E-01	9.76E-04	3.71E-02
40.53	40.53	6.54E-02	2.17E-05	5.89E-01	5.87E-02	2.53E-01	9.91E-04	3.26E-02
10.1325	20.265	8.74E-02	7.25E-06	6.61E-01	4.66E-02	1.42E-01	5.56E-04	6.17E-02
20.265	20.265	6.46E-02	1.07E-05	6.92E-01	4.88E-02	1.49E-01	5.82E-04	4.56E-02
30.3975	20.265	5.39E-02	1.34E-05	7.06E-01	4.98E-02	1.52E-01	5.94E-04	3.80E-02
40.53	20.265	4.72E-02	1.57E-05	7.15E-01	5.04E-02	1.54E-01	6.01E-04	3.33E-02
20.265	30.3975	7.87E-02	1.30E-05	6.21E-01	5.36E-02	2.00E-01	7.84E-04	4.53E-02
20.265	50.6625	9.68E-02	1.60E-05	5.21E-01	5.81E-02	2.80E-01	1.10E-03	4.32E-02
40.53	30.3975	5.77E-02	1.91E-05	6.45E-01	5.57E-02	2.08E-01	8.13E-04	3.33E-02
40.53	50.6625	7.13E-02	2.37E-05	5.43E-01	6.06E-02	2.92E-01	1.14E-03	3.18E-02

IV. Mass transfer limitation analysis

Calculations were performed to confirm mass transfer limitations are negligible. It should be noted that thermophysical properties of different gases were obtained from NIST WebBook, Thermophysical Properties of Fluid Systems, unless noted otherwise.³ Internal mass transfer limitations were assessed by using the Weisz-Prater Criterion, as shown in Eq. (S16).^{4,5} This specific sample calculation shows 10% CO₂ concentration over 5% NaNO₃/5% Ru/Al₂O₃ at 280 °C, which gave the highest value for the Weisz-Prater parameter.

$$\varphi = -\frac{r_{obs} * \rho_p * R_p}{D_e * C_{AS}} \qquad \text{Eq. (S16)}$$

The concentration of CO₂ at the external particle surface, C_{AS} , was 0.00409 mmol/mL. The radius of the catalyst particle, R_p , was 0.0138 cm. For calculation of the effective diffusivity, D_e , Knudsen diffusivity was calculated based on Eq. (S17).

$$D_e = \frac{d}{3} \sqrt{\frac{8 * R * T}{\pi * M_A}}$$
 Eq. (S17)

Pore diameter, d, was 2.1 x 10⁻⁸ m, which was obtained by N₂ physisorption measurement. Molecular mass, M_A , of 44.01 g/mol, temperature, T, of 553 K (280 °C), and gas constant, R, of 8.314 J/mol-K were used to obtain an effective diffusivity of 0.0361 cm²/s. The rate observed, r_{obs} was 0.020 mmol CO₂/s-g_{cat}. The bulk density of the catalyst, ρ_p , was 4 g/mL. From Eq. (S16), the WPN parameter was calculated to be 0.102, which is much smaller than 1, indicating that the internal mass transfer limitations were negligible. External mass transfer limitations were assessed using the Mears criterion, as shown in Eq. (S18). M_{ext} lower than 0.15 indicates that the external mass transfer limitations can be neglected.⁶ It should be noted that for calculation of M_{ext} , H₂ parameters were used, because the CO₂ reaction order was found to be negative for the 5% NaNO₃/5%Ru/Al₂O₃ catalyst. To obtain the mass transfer coefficient, the Reynolds number was calculated using Eq. (S19).

$$M_{ext} = -\frac{r_{obs} * \rho_p * L * n}{k_c * C_{AS}}$$
Eq. (S18)
$$Re = \frac{2 * U * L}{\nu}$$
Eq. (S19)

The superficial velocity, U, was 0.0195 m/s. and the particle size of the pellet, L, was 0.0138 cm. Kinematic viscosity of N₂ (4.60 x 10⁻⁵ m²/s) was used for conservative Re calculation, since the feed gas mixture was mostly composed of N₂ and H₂, but N₂ has lower kinematic viscosity leading to higher Re. Plugging in such values to Eq. S19, Re of 0.12 can be calculated, which was much less than 1. This means the mass transfer coefficient could be estimated by Eq. (S20).

$$Sh = \frac{k_c * 2 * L}{D_e} = 2$$
 Eq. (S20)

The bulk diffusivity of H₂-N₂ was used as D_e in Eq. (S20), which was estimated to be 2.26 cm²/s at 280 °C.⁷ Using Eq. (S20), a mass transfer coefficient of 1.64 m/s was calculated. The density of the bed was 4 g/mL, and the reaction order with respect to H₂ was 1.07. Using such values, Mears' criterion for external mass transfer limitations was calculated to be 1.75 x 10⁻³. This value is much smaller than 0.15, and therefore external transfer limitations can be neglected.

V. Approach to equilibrium calculation

To ensure the kinetic measurements were performed in a differential condition, approach to equilibrium was calculated using Eq. (S21) and Eq. (S22). This specific sample calculation shows $10\% \text{ CO}_2/40\% \text{ H}_2/\text{N}_2$ flow over 5% NaNO₃/5% Ru/Al₂O₃ at 260 °C.

$$K_{eq} = exp^{[ro]}(\frac{-\Delta G}{RT})$$
 Eq. (S21)

$$\eta = \frac{P_{CH4}P_{H20}}{P_{C02}P_{H2}^{4}} * \frac{1}{K_{eq}}$$
 Eq. (S22)

$$\eta = \frac{\left(\frac{0.83 \ kPa}{101.3 \ kPa}\right)\left(\frac{1.8 \ kPa}{101.3 \ kPa}\right)^2}{\left(\frac{9.0 \ kPa}{101.3 \ kPa}\right)\left(\frac{35.4 \ kPa}{101.3 \ kPa}\right)^4} * \frac{1}{6.380 * 10^6} = 3.02 * 10^{-10}$$
Eq. (S23)

Using -69.4 kJ/mol for ΔG_{533K} , K_{eq} of 6.380*10⁶ can be obtained from Eq. (S21).⁸ Using the equilibrium constant obtained and partial pressures of different components of CO₂ methanation reaction, obtained from experiment in the given condition, $\eta = 3.02 * 10^{-10}$ is obtained, as shown in Eq. (S23). The obtained value is orders of magnitude smaller than 1, indicating that the reaction is operating under differential conditions.

References

- Park, S. J.; Kim, Y.; Jones, C. W. NaNO₃-Promoted Mesoporous MgO for High-Capacity CO₂ Capture from Simulated Flue Gas with Isothermal Regeneration. *ChemSusChem* 2020, *13* (11), 2988–2995.
- Karelovic, A.; Ruiz, P. Mechanistic Study of Low Temperature CO₂ Methanation over Rh/TiO₂ Catalysts. J. Catal. 2013, 301, 141–153.
- (3) Thermophysical Properties of Fluid Systems. National Institute of Standards and Technology, U.S. Department of Commerce, https://webbook.nist.gov/chemistry/fluid/
- P.B. Weisz, C.D. Prater, Interpretation of Measurements in Experimental Catalysis, Adv.
 Catal. 6 (1954) 143–196. https://doi.org/10.1016/S0360-0564(08)60390-9
- (5) S. Mondal, H. Malviya, P. Biswas, Kinetic Modelling for the Hydrogenolysis of Bioglycerol in the Presence of a Highly Selective Cu–Ni–Al₂O₃ Catalyst in a Slurry Reactor, React. Chem. Eng. (2019) 595–609. https://doi.org/10.1039/c8re00138c.
- (6) M. Mohagheghi, G. Bakeri, M. Saeedizad, Study of the Effects of External and Internal Diffusion on the Propane Dehydrogenation Reaction over Pt-Sn/Al₂O₃ Catalyst, Chem. Eng. Technol. 30 (2007) 1721–1725. https://doi.org/10.1002/ceat.200700157.
- D.S. Scott, K.E. Cox, Temperature Dependence of the Binary Diffusion Coefficient of Gases, Can. J. Chem. Eng. 38 (1960) 201 https://doi.org/10.1002/cjce.5450380605
- (8) D.R. Stull, E.F. Westrum Jr., G.C. Sinke, The Chemical Thermodynamics of Organic Compounds, Wiley, 1969.