Highly enhanced photocatalytic hydrogen activity by constructing large portion of Cu single atoms on the surface of TiO₂

Yiwen Ma, Yuxiang Ma, Tianping Lv, Xiyu Deng, Xinya Kuang, Jin Zhang, Qingju Liu*, Yumin Zhang*

Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.

*Corresponding author: Yumin Zhang, E-mail: zhangyumin@ynu.edu.cn, Tel: +138 08725319;

Qingju Liu, E-mail: qjliu@ynu.edu.cn. Tel: +86 0871 65032713.

Fig. S1 XRD patterns of TiO₂ samples with different Cu loading. The crystal structures of Cu-TiO₂ samples and pure TiO₂ were investigated by XRD. As shown in Fig. S1, all TiO₂-based samples are mainly composed of rutile-phase TiO₂ (PDF#99-0008). Well-defined diffraction angles (2 θ) at 25.303, 37.792, 48.035° can be indexed as the (1 0 1), (0 0 4), (2 0 0) planes of anatase phase TiO₂.^[1]

Fig. S2 N_2 sorption isotherms of 0.399 wt% Cu-TiO₂ and pure TiO₂, measured at 77 K.

Fig. S3 TEM image of 0.399 wt% Cu-TiO $_2$.

Fig. S4 HAADF-STEM image of Cu-TiO₂

Fig. S5 Cooperative photoactivation process and regeneration process of Cu-TiO₂

Fig. S6 Fluorescence decay curves of pure TiO_2 and 0.399 wt% Cu-TiO₂.

Sample	Theoretial Cu ratio	ICP tested Cu	
	(wt.%)	ratio	
		(wt.%)	
pure TiO ₂	0.000%	0.000%	
Cu-TiO ₂ -1	0.242%	0.198%	
Cu-TiO ₂ -2	0.362%	0.354%	
Cu-TiO ₂ -3	0.483%	0.359%	
Cu-TiO ₂ -4	0.604%	0.399%	
Cu-TiO ₂ -5	0.725%	0.459%	
Cu-TiO ₂ -6	0.846%	0.498%	

 Table S1. Parameters from inductively couple plasma spectroscopy of Cu-TiO2

Materials	Specific surface area (BET)	The efficiency of hydrogen evolution	Ref.
Co SA-TiO ₂	56 m ² ·g ⁻¹	$1.682 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[2]
Pt SA/Def-s-TiO ₂	$78.6 \text{ m}^2 \cdot \text{g}^{-1}$	$13.46 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[3]
SAAg-g-CN	$53.2 \text{ m}^2 \cdot \text{g}^{-1}$	$0.498 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[4]
Pt _{0.1} -CN	95.3 $m^2 \cdot g^{-1}$	$0.473 \text{ mmol} \cdot \text{g}^{-1} \cdot \text{h}^{-1}$	[5]
Ag@Ni/TiO2	$31.3 \text{ m}^2 \cdot \text{g}^{-1}$	2.9339 mmol·g ⁻¹ ·h ⁻¹	[6]
$a-MoS_x/TiO_2$	$31.3 \text{ m}^2 \cdot \text{g}^{-1}$	1.106 mmol·g ⁻¹ ·h ⁻¹	[7]
MoS _x -rGO/ TiO ₂	$50.1 \text{ m}^2 \cdot \text{g}^{-1}$	0.2066 mmol·g ⁻¹ ·h ⁻¹	[8]
Co-NG/TiO ₂	$73.6 \text{ m}^2 \cdot \text{g}^{-1}$	0.67744 mmol·g ⁻¹ ·h ⁻¹	[9]
CuO _x /TiO ₂	$144.6 \text{ m}^2 \cdot \text{g}^{-1}$	0.1126 mmol·g ⁻¹ ·h ⁻¹	[10]
Cu-TiO ₂	159.02 m ² ·g ⁻¹	21.053 mmol·g ⁻¹ ·h ⁻¹	this work

Table S2. Table for the specific surface area and efficiency of hydrogen evolution of various materials

Sample	$\tau_1(ns)$	$\tau_2(ns)$	A ₁	A ₂	Decay Lifetime(ns)
TiO ₂	4.745	47.255	4945.279	4530.26	25.070
Cu-TIO ₂	4.259	46.145	5892.575	3550.06	20.007

Table S3. The fitted PL decay results of pure TiO_2 and 0.399 wt% Cu- TiO_2

Reference

[1] Wei X, Zhu G, Fang J and Chen J. Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO₂ nanoparticles[J]. International Journal of Photoenergy, 2013, 2013.

[2] Xin W, Shouwei Z, Mei Q, Yang L, Yongfan Z, Pengfei A, Jing Z, Huabin Z, Jian Z. Atomically defined Co on two-dimensional TiO₂ nanosheet for photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2021, 420: 127681.

[2] Xiaoling H, Junying S, Jingli L, Hao Z, Zhiming S, Chunquan L, Shuilin Zheng, Qingxia L. Single-atomic Pt sites anchored on defective TiO₂ nanosheets as a superior photocatalyst for hydrogen evolution[J]. Journal of Energy Chemistry, 2021, 62: 1-10.

[4] Xiaojie L, Shiyong Z, Xiaoguang D, Huayang Z, Shi-ze Y, Panpan Z, Sanping J, Shaomin L, Hongqi S, ShaobinW. Coupling hydrothermal and photothermal singleatom catalysis toward excellent water splitting to hydrogen[J]. Applied Catalysis B: Environmental, 2021, 283: 119660.

[5] Yuanqing Z, Tian W, Tao X, Yingxuan L, Chuanyi W. Size effect of Pt co-catalyst on photocatalytic efficiency of $g-C_3N_4$ for hydrogen evolution[J]. Applied Surface Science, 2019, 464: 36-42.

[6] Gao D, Liu W, Xu Y, Ping W, Jiajie F, Huogen Y. Core-shell Ag@ Ni cocatalyst on the TiO₂ photocatalyst: one-step photoinduced deposition and its improved H₂-evolution activity[J]. Applied Catalysis B: Environmental, 2020, 260: 118190.

[7] Yu H, Yuan R, Gao D, Ying Xu, Jiaguo Yu. Ethyl acetate-induced formation of amorphous MoS_x nanoclusters for improved H₂-evolution activity of TiO₂ photocatalyst[J]. Chemical Engineering Journal, 2019, 375: 121934.

[8] Ying X, Yongan L, Ping W, Xuefei W, Huogen Y. Highly efficient dual cocatalystmodified TiO_2 photocatalyst: RGO as electron-transfer mediator and MoS_x as H₂evolution active site[J]. Applied Surface Science, 2018, 430: 176-183.

[9] Lanhua Y, Fujun L, Jing L, Caixian Z. Efficient noble-metal-free Co-NG/TiO₂ photocatalyst for H₂ evolution: Synergistic effect between single-atom Co and N-doped graphene for enhanced photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12766-12775.

[10] Fan Y, Menglei L, Xin C, Zuwei X, Haibo Z. Simultaneous control over lattice doping and nanocluster modification of a hybrid CuO_x/TiO_2 photocatalyst during flame synthesis for enhancing hydrogen evolution[J]. Solar RRL, 2018, 2(12): 1800215.