Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Liquid phase catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over ZrO₂/SBA-15

Amin Osatiashtiani,^a Samantha A. Orr,^b Lee J. Durndell,^c Irene Collado García,^{a,d} Andrea Merenda,^b Adam F. Lee*^b and Karen Wilson*^b

^aEnergy & Bioproducts Research Institute (EBRI), College of Engineering & Physical Sciences, Aston University, Birmingham B4 7ET, UK.

^bCentre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne VIC 3000, Australia.

^cSchool of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK ^dACERINOX, S.A, 11379 Los Barrios, Cádiz, Spain.

Figure S1. Surface versus bulk Zr loading of ZrO₂/SBA-15 measured by XPS and ICP-OES, respectively.

Naminal 7-	Zr loading / wt% (ICP)	Surface Composition (XPS)						
Nominal Zr surface coverage /%		O wt%	Zr wt%	Si wt%	O at%	Zr at%	Si at%	
1	0.8	38.6	3.2	58.1	53.4	0.8	45.8	
5	3.3	37.7	3.5	58.8	52.5	0.9	46.7	
10	4.3	34.9	5.8	59.3	50.1	1.5	48.5	
20	8.4	36.6	10.5	52.9	53.3	2.7	43.9	
30	10.7	36.2	13.2	50.7	53.7	3.4	42.9	
50	11.6	34.3	16.0	49.7	52.5	4.3	43.2	
100	14.6	33.8	17.4	48.8	52.3	4.7	42.9	
ZrO ₂	58.8	18.6	81.4	0	56.6	43.4	0	

Table S1. Elemental analysis of ZrO₂/SBA-15 catalysts.

Figure S2. Zr 3d XP spectra of ZrO₂/SBA-15 as a function of Zr surface loading (wt%).

N₂ porosimetry

Figure S3. N₂ adsorption-desorption isotherms of ZrO₂/SBA-15.

Transmission electron microscopy

Figure S4. TEM micrographs of 11.6 wt% Zr/SBA-15 illustrating 2D parallel pore channels.

Figure S5. Powder X-ray diffractograms of ZrO₂/SBA-15 as a function of Zr loading (wt%): (a) low angle patterns; and (b) wide angle patterns including parent SBA-15 support and bulk ZrO₂.

Acidity measurement

Figure S6. Propylamine TPD showing 41 amu mass spectrometer signal for reactively formed propene from $ZrO_2/SBA-15$ as a function of Zr loading.

Figure S7. DRIFTS spectra of absorbed pyridine on pure ZrO_2 and $ZrO_2/SBA-15$.

Batch reactor studies

Figure S8. EL conversion as a function of reaction time over ZrO₂/SBA-15. Reaction conditions: 5 mmol EL:250 mmol IPA, 100 mg catalyst, 170 °C, 5 bar N₂.

Figure S9. GVL yield as a function of EL reaction time over ZrO₂/SBA-15. Reaction conditions: 5 mmol EL:250 mmol IPA, 100 mg catalyst, 170 °C, 5 bar N₂.

Figure S10. GVL selectivity as a function of EL reaction time over ZrO₂/SBA-15. Reaction conditions: 5 mmol EL:250 mmol IPA, 100 mg catalyst, 170 °C, 5 bar N₂.

Identification of Propyl Levulinate

Figure S11. Gas chromatogram of reaction mixture for EL conversion to GVL over 11.6 wt% Zr/SBA-15 at 170 °C evidencing reactively-formed propyl levulinate (PL) intermediate.

Figure S12. ¹H NMR in CDCl₃ of isopropyl levulinate (PL) formed during EL conversion to GVL over 11.6 wt% Zr/SBA-15 at 170 °C. NMR spectra were recorded on a Bruker Avance3 spectrometer operating at 300.14 MHz for ¹H and referenced to residual solvent peaks.

Batch reactor studies at 150 °C

Figure S13. EL conversion, GVL yield and selectivity as a function of time for 11.6 wt% Zr/SBA-15. Reaction conditions: 5 mmol EL:250 mmol IPA, 100 mg catalyst, 150 °C, 5 bar N₂.

Figure S14. EL conversion and GVL selectivity as a function of reaction time for 11.6 wt% Zr/SBA-15. Reaction conditions: 0.25 M EL in IPA liquid feedstream, 100 mg catalyst, 150 °C, 0.1 ml/min, 27.5 min residence time.

Figure S15. Comparison of cumulative GVL and acetone yields for 11.6 wt% Zr/SBA-15 in continuous flow versus batch operation. Reaction conditions: (**Flow**) 0.25 M EL in IPA liquid feedstream, 100 mg catalyst, 150 °C, 0.1 ml/min, 27.5 min residence time, over 6 h; (**Batch**) 5 mmol EL:250 mmol IPA, 100 mg catalyst, 150 °C, 5 bar, 6 h reaction.

Figure S16. EL conversion and GVL selectivity as a function of reaction time for 11.6 wt% Zr/SBA-15. Reaction conditions: 0.25 M EL in IPA liquid feedstream, 100 mg catalyst, 150 °C, 0.18 ml/min, 17.5 min residence time.

Optimisation studies

Figure S17. (a) Influence of reaction temperature on EL transformation to GVL in continuous flow over 12 wt% ZrO₂/SBA-15. EL conversion and GVL selectivity are average over 6 h reaction. Reaction conditions: 100 mg catalyst, 27.5 min residence time, over 6 h, liquid stream of ethyl levuliate (0.25 M) and isopropyl alcohol. (b) Arrhenius plot of rate of EL conversion versus reaction temperature between 130-150 °C. Note these experiment were performed with a new catalyst batch which delivered slightly higher GVL selectivity.

Figure S18. Influence of EL concentration on transformation to GVL under continuous flow over 12 wt% ZrO₂/SBA-15. EL conversion and GVL selectivity are average over 6 h reaction. Reaction conditions: 100 mg catalyst, 27.5 min residence time, liquid stream of ethyl levulinate and isopropyl alcohol (0.13-0.48 M), 150°C. . Note these experiment were performed with a new catalyst batch which delivered slightly higher GVL selectivity.

Spiking studies in continuous flow

Three reaction conditions were performed in the spiking studies, i) pre-treatment of the catalyst bed with acetone or GVL for 30 minutes at 150 °C prior to flowing reaction mixture over catalyst bed ii) stoichiometric (1:1) and iii) excess (5:1) poisoning of reaction mixture relative to EL.

Figure S19. EL conversion averaged over 2 h reaction for 11.6 wt% Zr/SBA-15. Reaction conditions: (**Flow**) 0.25 M EL in IPA liquid feedstream, 100 mg catalyst, 150 °C, 0.1 ml/min, 27.5 min residence time, over 2 h. Pretreatment: Stream of GVL or acetone (0.1 ml/min) was passed over the catalyst bed for 30 minutes prior to starting reaction. Stoichiometric: GVL or acetone (1:1) was introduced in standard reaction mixture. Excess: GVL or acetone (5:1) was introduced in standard reaction mixture.

Spent Catalyst Characterisation

Figure S20. C 1s XP spectra of post-reaction 11.6 wt% Zr/SBA-15 following 2 h EL conversion under continuous flow. Reaction conditions: Flow, 0.25 M EL in IPA liquid feedstream, (5:1) GVL spiking, 100 mg catalyst, 150 °C, 0.1 ml/min, 27.5 min residence time, over 2 h.

	Surface composition										
	wt%				at%						
Catalyst	0	C	Zr	Si	0	С	Zr	Si			
As-prepared	51.3	3.2	12.1	33.4	64.2	5.9	3.0	26.9			
Post-reaction	43.6	10.5	13	32.9	55.49	17.8	2.9	23.81			

Table S2. Surface composition of as-prepared and post-reaction 11.6 wt% Zr/SBA-15.

Recyclability test

Figure S21. EL conversion as a function of time for three consecutive 6 h reactions in continuous flow over 12 wt% ZrO₂/SBA-15; 2-isopropanol washes at indicated time intervals to attempt in-situ catalyst regeneration.