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Experimental Section

Materials

   Cobalt chloride hexahydrate (99%), nicke perchlorate hexahydrate (99%), sodium 

benzoate (99%), triethylamine (99.5%), hydroxymethylpyridine (98%, hmp-H), boric 

acid (99%), tetraethyl orthosilicate (99%, TEOS) and naphthalene (98%) were 

supplied by Saan Chemical Technology Co., Ltd (Shanghai, China). Isopropanol 

(99.7%) and heptane (97%) were supplied by Sinopharm Chemical Reagent Co. Ltd 

(China). High purity hydrogen (99.999%), high purity nitrogen (99.999%), high 

purity argon (99.999%), 10% H2/Ar and 7% NH3/Ar were supplied by Hangzhou 

Jingong Materials Co. Ltd (China). All other reagents used in this work are of 

analytical grade, which were directly used without further purification.

Preparation of PMS-16

   PMS-16 was prepared by employing sol-gel method. Sodium benzoate (2.5 mmol) 

and Ni(ClO4)2·6H2O (1 mmol) were dissolved in 30 mL of methanol under stirring. 

CoCl2·6H2O (1 mmol), Et3N (2 mmol) and hmp-H (2 mmol) were successively added 

into the mixture under stirring. The mixture was further reacted at room temperature 

for 4 h, resulting a coordination complex, abbreviated as {NiCo}. Subsequently, 

TEOS (3.5 mL, Si : metal = 8 : 1) and boric acid (2 mmol) were dropwise added into 

the {NiCo} solution, which was stirred until formation of gel at room temperature. 
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The resulting gel was transferred into a Teflon-lined autoclave, which was reacted at 

120 °C for 48 h. The resulting solid was collected, dried and annealed at different 

temperatures (300, 400, 500, 600 and 700 °C) under N2 atmosphere for 2 h.

Scaled preparation of PMS-16. Sodium benzoate (0.25 mol) and 

Ni(ClO4)2·6H2O (0.1 mol) were dissolved in 2.5 L of methanol under stirring. 

CoCl2·6H2O (0.1 mol), Et3N (0.2 mol) and hmp-H (0.2 mol) were successively added 

into the mixture under stirring. The mixture was further reacted at room temperature 

for 4 h, resulting coordination complex {NiCo}. Subsequently, TEOS (350 mL) and 

boric acid (0.2 mol) were dropwise added into the {NiCo} solution, which was stirred 

until formation of gel at room temperature. The resulting gel was transferred into a 

Teflon-lined autoclave, which was reacted at 120 °C for 48 h. The resulting solid was 

collected, dried and annealed at 600 °C under N2 atmosphere for 2 h.

Catalyst characterization

   Transmission electron microscopy (TEM, HT7700 and JEM 2100F) and scanning 

electron microscope (SEM, Hitachi S-4800) were used to characterize the 

morphology of PMS-16. Powder X-ray diffraction (PXRD) data were recorded on a 

RIGAKU D/MAX 2550/PC with Cu Kα radiation (λ = 1.5406 Å). FT-IR spectra were 

collected from KBr pellets on an FTS-40 spectrophotometer. Thermogravimetric 

analysis (TGA) was carried out under N2 atmosphere on a NETZSCH STA 409 

PC/PG instrument at a heating rate of 10 °C min−1. Inductively coupled plasma mass 

spectrometry (ICP-MS) was performed on an X-Series II instrument. A Micromeritics 

ASAP 2020 surface area analyzer was used to measure N2 gas adsorption/desorption 

isotherms. Pulse CO chemisorption measurements were carried out on a Micrometrics 

AutoChem 2920 instrument. A PMS-16 sample was pre-reduced in H2 atmosphere at 

500 °C with a heating rate of 10 °C min−1, which was subsequently cooled down to 50 

°C for CO chemisorption analysis by introducing successive pulse doses of 5% CO-

He gas. X-ray photoelectron spectra (XPS) were recorded on a VG ESCALAB 

MARK II machine. Temperature-programmed reduction of H2 (H2-TPR) and 

temperature-programmed desorption of NH3 (NH3-TPD) were conducted on VDsorb-
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91i instrument. Temperature-programmed oxidation (TPO) experiments were 

conducted on AutoChem1 II 2920. The conversion and chemoselectivity for the 

hydrogenation reaction were based on the GC-MS analysis results.

Electrochemical measurements

5.0 mg catalyst was dispersed in 500.0 µL ethanol and 50.0 µL 0.5 wt% nafion 

solution, and followed by intense sonication for 0.5 h, resulting a homogeneous 

catalyst ink. The ink was deposited onto carbon paper and dried, which were used as 

the working electrodes in a dual chamber cell system.

Cyclic voltammetry experiments were performed using a three-electrode cell 

with a CHI660E electrochemical workstation at ambient temperature. 3.0 mg catalyst 

was dispersed in 300.0 µL ethanol and 30.0 µL 0.5 wt% nafion solution, followed by 

intense sonication for 0.5 h, resulting a homogeneous catalyst ink. 30.0 µL ink was 

deposited onto carbon paper and dried to form a uniform thin film, which was used as 

the working electrode. Cyclic voltammograms were recorded with a scan rate of 10 

mV s-1 in 1 M KOH aqueous solution by using saturated Ag/AgCl electrode as the 

reference electrode.

Catalytic hydrogenation

    Catalytic hydrogenation of naphthalene was performed in a 50 mL 

autoclave lined with polytetrafluoroethylene (PTFE). PMS-16 was activated before 

catalyzing the hydrogenation reaction by reducing in H2 atmosphere (1 atm) at 500 °C 

for 1 h. In a typical experimental procedure, 0.05 mmol of naphthalene in 0.5 mL 

heptane, PMS-16 (10.0 mol% based on Co and Ni) and 4 mL of isopropanol were 

added into the autoclave. Hydrogen gas (1.5 MPa) was injected into the reactor five 

times to remove the dissolved air. The autoclave was heated at 120 °C in an oil bath 

for 8 h. The solid catalyst was separated by centrifugation, and the products were 

analyzed by GC-MS. The major products were calibrated by using standard curves. 

All catalytic reactions were performed twice and the reported results are the average 

values.
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The reaction conditions for studying the kinetic behaviors of different catalysts 

in the hydrogenation reaction at different temperatures: naphthalene (1 mmol), 

catalyst (0.5 mol% based on Co and Ni), heptane (1 mL) and isopropanol (8 mL), 8 h, 

1.5 MPa H2. 

The reaction conditions for selective hydrogenation of naphthalene catalyzed by 

different control catalysts, which were prepared by directly pyrolyzing the 

corresponding coordination complexes: naphthalene (0.1 mmol), catalyst (25.0 mol% 

based on Ni or Co), heptane (0.5 mL) and isopropanol (4 mL), 8 h, 120 oC, 1.5 MPa 

H2.
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Figures

Fig. S1 TGA curves for silica gel, coordination complex {NiCo} and the PMS-16 

precursor.
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Fig. S2 PXRD profiles of the PMS-16 precursor and the annealed products at 

different temperatures (the numbers in the parentheses represent the annealing 

temperature).
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Fig. S3 FT-IR spectra of the annealed products of the PMS-16 precursor at different 

temperatures.
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Fig. S4 Raman spectrum of PMS-16 (700).
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Fig. S5 Nitrogen adsorption/desorption isotherms for the PMS-16 precursor (the 

insert shows the pore size distribution for the PMS-16 precursor).
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Fig. S6 Nitrogen adsorption/desorption isotherms for PMS-16 (300) (the insert shows 

the pore size distribution for PMS-16 (300)).
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Fig. S7 Nitrogen adsorption/desorption isotherms for PMS-16 (400) (the insert shows 

the pore size distribution for PMS-16 (400)).
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Fig. S8 Nitrogen adsorption/desorption isotherms for PMS-16 (500) (the insert shows 

the pore size distribution for PMS-16 (500)).
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Fig. S9 Nitrogen adsorption/desorption isotherms for PMS-16 (700) (the insert shows 

the pore size distribution for PMS-16 (700)).
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Fig. S10 SEM image of the PMS-16 precursor.
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Fig. S11 HR-TEM image of the PMS-16 precursor.
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Fig. S12 HR-TEM images of (a) PMS-16 (300), (b) PMS-16 (400) and (c) PMS-16 

(500).
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Fig. S13 HR-TEM image of PMS-16 (700).
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Fig. S14 XPS spectrum of PMS-16.
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Fig. S15 Catalytic reusability test for PMS-16. Reaction conditions: naphthalene (0.05 

mmol), catalyst (10.0 mol% based on Ni and Co), heptane (0.5 mL) and isopropanol 

(4 mL), 8 h, 120 oC, 1.5 MPa H2.
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Fig. S16 PXRD profile of PMS-16 after catalysis.
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Fig. S17 HR-TEM image of PMS-16 after catalysis.
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Fig. S18 High resolution (a) Ni 2p and (b) Co 2p XPS spectra of PMS-16 after 

catalysis.
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Fig. S19 Temperature-programmed oxidation (TPO) profiles of PMS-16 and 

recovered PMS-16 after catalysis.
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Fig. S20 Catalytic performance of PMS-16 for hydrogenation of naphthalene at 120 
oC.
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Scheme S1 A plausible catalytic pathway for hydrogenation of naphthalene catalyzed 

by PMS-16.
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Tables 

Table S1. Textural properties of different materials

Material
Co

(wt%)a

Ni

(wt%)a

SBET

(m2 g−1)b

Pore Size

(nm)b

PMS-16 precursor 1.0 1.0 56.8 -

PMS-16 (300) 1.9 2.0 141.0 1.89

PMS-16 (400) 2.0 1.9 230.3 1.89

PMS-16 (500) 2.0 2.0 326.1 1.89

PMS-16 2.0 2.0 427.3 1.89

PMS-16 (700) 2.0 2.1 132.1 1.89

aDetermined by ICP-MS. bDetermined by multipoint BET method.
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Table S2. CO adsorption properties over different PMS materials

Material
CO uptake 

(μmol/g)a

Dispersion

(%)b

Metal surface area

(m2/g)c

Particle size

(nm)d

PMS-16 64.1 18.9 125.6 5.4

recovered PMS-16 62.0 18.3 121.5 5.5

aEstimated from the area under the CO pulse signals. 
bCalculated from the CO uptake using equation: (V × S.F. × M.W.)/(c/100) × 100; 

where V is the amount of CO uptake (mol/g), S.F. is the stoichiometric factor, M.W. 

is the average atomic weight of supported metal and c is the metal loading (wt%). 
cCalculated from the equation: (V × NA. × S.F. × σm. × 10-18)/c × 100; where NA is the 

Avagadro number and σm is the average metal cross section area. 
dMean particle size calculated from the following equation: 60/(Am × ρ), where Am is 

the metal surface area per gram catalyst and ρ is the average metal density.
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Table S3. Quantities of acid sites in different PMS materials

Material
Weak acid sites

(μmol/g)

Strong acid sites

(μmol/g)

Total acid sites

(μmol/g)

PMS-16B-free 4.67 5.29 9.96

PMS-16 18.97 3.51 22.48
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Table S4. The catalytic performances of PMS-16 for selective hydrogenation of 

naphthalene in different solventsa 

Entry Solvent Time (h) Conv. (%)b Sel. (%)b

1 Methanol 6 39.0 >99

2 Ethanol 6 41.6 >99

3 Isopropanol 6 88.1 >99

4 Heptane 6 34.2 >99

5 Tetrahydrofuran 6 57.5 >99

aReaction conditions: naphthalene (0.05 mmol), solvent (4 mL), PMS-16 (10.0 mol% 

based on Ni and Co), 120 oC, 1.5 MPa H2. bDetermined by GC-MS.
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Table S5. Selective hydrogenation of naphthalene catalyzed by different PMS 

materialsa 

Entry Catalyst Conv. (%)b Sel. (%)b

1 PMS-16 (300) 52.1 >99

2 PMS-16 (400) 94.6 >99

3 PMS-16 (500) 87.1 >99

4 PMS-16 (700) 35.5 >99

5 PMS-16a (Ni:Co = 2:1) 95.4 >99

6 PMS-16b (Ni:Co = 1:2) 81.4 >99

7 PMS-16c (Si:metal = 2:1) 73.7 >99

8 PMS-16d (Si:metal = 4:1) 89.2 >99

9 PMS-16 (Si:metal = 8:1) >99 >99

10 PMS-16e (Si:metal = 16:1) 92.4 >99

11 Scale-prepared PMS-16 >99 >99

aReaction conditions: naphthalene (0.05 mmol), catalyst (10.0 mol% based on Ni and 

Co), heptane (0.5 mL) and isopropanol (4 mL), 8 h, 120 oC, 1.5 MPa H2. bDetermined 

by GC-MS.
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Table S6. Comparison of the catalytic performances of different catalysts in the 

literature for selective hydrogenation of naphthalene to produce tetralin in autoclaves

Catalyst
T

(oC)
P

(MPa)
Time
(h)

Conv.
(%)

Sel.
(%)

Ref.

Pd/USY 200 6.89 2 95 95 S1

Pd/Al-MCM-41 250 6.2 0.3 100 94.5 S2

Ni/ZSM-5 180 5 10 >95 >95 S3

Ru/PVPy 150 5 1 100 78 S4

Ru/MgO 150 5 - 95 80 S5

Pt/HAP 250 6 4 96 97 S6

PMS-16 120 1.5 8 >99 >99 This 
work
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Table S7. Comparison of the catalytic performances of different catalysts in the 

literature for selective hydrogenation of naphthalene to produce tetralin in fixed-bed 

reactors

Catalyst
T

(oC)
P

(MPa)
Conv. 
(%)

Sel.
(%)

Ref.

MoCx@OMSF-10 340 4 85.9 98.3 S7

NiAl7/4 340 4 54.6 99.9 S8

MoP/HY 300 4 85 99 S9

MoP/AC 300 4 82 99 S10

Ni-MFI-NSs 340 4 84.9 100 S11

MoP 300 4 >90 >90 S12

Mo2C/AC 340 4 98 90 S13

Mo2C/HY 300 3 95 81.4 S14

PMS-16 120 1.5 >99 >99 This work
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Table S8. Selective hydrogenation of naphthalene catalyzed by different control 

catalysts on electrodes under closed-circuit operationa

Entry Anode Cathode Yield (%)b

1 [Co] [Co] 0.63%

2 [Co] [Ni] 3.67%

3 [Co] [NiCo] 5.08%

4 [Ni] [Co] 0.80%

5 [Ni] [Ni] 0.99%

6 [Ni] [NiCo] 1.66%

7 [NiCo] [Co] 2.43%

8 [NiCo] [Ni] 5.44%

9 [NiCo] [NiCo] 8.12%

aReaction conditions: naphthalene (0.1 mmol), catalyst (25.0 mol% based on Ni and 

Co), heptane (0.5 mL) and isopropanol (4 mL), 8 h, 120 oC, 1.5 MPa H2. bDetermined 

by GC-MS.
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Table S9. Selective hydrogenation of naphthalene catalyzed by different control 

catalysts on electrodes under open-circuit operationa

Entry Anode Cathode Yield (%)b

1 [Co] [Co] 0.60%

2 [Co] [Ni] 0.96%

3 [Co] [NiCo] 1.58%

4 [Ni] [Co] 0.61%

5 [Ni] [Ni] 0.95%

6 [Ni] [NiCo] 1.56%

7 [NiCo] [Co] 0.61%

8 [NiCo] [Ni] 0.97%

9 [NiCo] [NiCo] 1.59%

aReaction conditions: naphthalene (0.1 mmol), catalyst (25.0 mol% based on Ni and 

Co), heptane (0.5 mL) and isopropanol (4 mL), 8 h, 120 oC, 1.5 MPa H2. bDetermined 

by GC-MS.
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