CeO₂ Nanoarrays Decorated Ce-doped ZnO Nanowire Photoanode for Efficient Hydrogen Production with Glycerol as a Sacrificial Agent

Seungkyu Kim,^{a,‡} Eunui An,a,‡ Inhyeok Oh,^a Jun Beom Hwang,^a Sehun Seo,^a Yoonsung Jung,^a Jun-Cheol Park,^a Hansol Choi,^a Chang Hyuck Choi,^b Sanghan Lee,^{*a, c}

a. School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic Korea, E-mail: sanghan@gist.ac.kr

b. Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea

c. Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals(Inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic Korea

Fig. S1 XRD of FTO substrate, $CeO_2(250 p)/FTO$, and $CeO_2(250, 500 p)/Ce-ZnO electrodes.$

Fig. S2 XPS spectra of Ce-ZnO NWs: HR-XPS spectrum of Ce.

Fig. S3 (a) and (b) SEM images of CeO $_{\rm 2}/{\rm Ce-ZnO}$ NWs electrode.

Fig. S4 LSV curves of Ce-ZnO and CeO_2(10, 25, 100 p)/Ce-ZnO NWs electrode in 0.1 M KOH with 0.1 M glycerol

Fig. S5 LSV curves of ZnO NWs, Ce-ZnO, and CeO₂/Ce-ZnO in 0.1 M KOH with(line)/without(dashed) 0.1 M glycerol

Fig. S6 (a) charge transfer efficiency and (b) charge separation efficiency of bare ZnO NWs and $CeO_2(25 p)/Ce$ -ZnO photoanode.

The above result was calculated using the following equation.

$$\eta_{ct} = {}^{J_{H_2O}} \mu_{glycerol}$$
(1)

$$\eta_{sep} = \int_{glycerol} \int_{abs}$$
(2)

The obtained photocurrent density, J_{H_2O} , could be represented as follows:

$$J_{H_20} = J_{abs} \times \eta_{sep} \times \eta_{ct}$$
(3)

Since there is no hole injection barrier for glycerol oxidation (n_{ct} = 1):

$$J_{glycerol} = J_{abs} \times \eta_{sep}$$
⁽⁴⁾

Here, $J_{glycerol}$ is the photocurrent density measured with glycerol photo-oxidation and J_{abs} is the photocurrent density expected when absorbed photons are completely converted into current. Estimated J_{abs} of ZnO NWs and CeO₂/Ce-ZnO are about 2.83 and 5.31 mA/cm², respectively

Fig. S7 EIS spectra of bare ZnO NWs, Ce-ZnO, and CeO $_2/\mbox{Ce-ZnO}$ photoanode. Insert shows the equivalent circuit used for it.

Photoanode	R _s (Ω·cm²)	R₁ (Ω·cm²)
ZnO NWS	13.0	2711.0
Ce-ZnO	13.8	1299.0
CeO ₂ /Ce-ZnO	27.7	916.3

Table S1 Comparison of charge transfer resistance results of photoanodes

Fig. S8 LSV curves of ZnO NWs, Ce-ZnO, and CeO $_{\rm 2}/{\rm Ce-ZnO}$ photoanodes under chopped illumination.

Fig. S9. I-t curves of bare ZnO, Ce-ZnO and CeO₂(25 p)/Ce-ZnO photoanode in 0.1 M KOH with 0.1 M glycerol