Supporting Information

The insight of regulation between crystallinity and oxygen vacancy of

BiVO_{4} affects the photocatalytic oxygen evolution activity

Yaqian Zhang ${ }^{\text {a }}$, Wenjun Han ${ }^{\text {a }}$, Lingling Ding ${ }^{\text {a }}$, Fan Fang ${ }^{\text {a }}$, Zhengzheng Xie ${ }^{\text {a }}$, Xianglei Liu ${ }^{\text {b }}$, Kun Chang*a

[^0]

Fig.S1 (a-d) SEM and (f) XRD of BiVO_{4} before and after heat treatment at $300,400,500$, and $600{ }^{\circ} \mathrm{C}$.

Table S1. FWHM and Crystallinity of BiVO_{4} before and after heat treatment at $300,400,500$, and 600°

BVO									300BVO	400BVO	500BVO	600BVO
FWHW	(112)	0.33819	0.3297	0.31507	0.33279	0.33804						
	(011)	0.54841	0.41661	0.38024	0.51415	0.56290						
Crystallinity		70.47%	70.64%	98.42%	71.85%	68.63%						

Fig.S2 i-t test of 400BVO film.

Fig.S3 The fluorescence lifetime of BiVO_{4} before heat treatment at 300,500 , and $600^{\circ} \mathrm{C}$.

Fig. S4 The XPS spectra of BiVO_{4} before and after O_{2} heat treatment at $300,400,500$, and $600^{\circ} \mathrm{C}$: (a) Bi $4 f,(b) \vee 2 p$.

Fig. S5 Schematic illustration of the oxygen defect recombination process.

Fig. S6 Photocatalytic rate of O_{2} generation in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.

Fig. 57 The chromogenic reaction of NO_{2}^{-}and Fe^{2+}.

Fig. S8 The recyclability experiments in $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution.
(a)

(c)

(e)

Fig.S9 The testing of water splitting research and AQY test: (a) An automatic injection circulation system. (b) and (c) The distance between the light intensity detector and the emission center of the lamp source is 12 cm . (d) 420 nm monochromatic filter with a diameter 2 cm . (e) light spot with a diameter 3 cm .

Table S2. The AQY test data of 400BVO.

$\lambda(\mathrm{nm})$	Rate of $\mathrm{O}_{2}\left(\mu \mathrm{~mol} / \mathrm{cm}^{2}\right)$	$\mathrm{I}\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	$\mathrm{AQY}(\%)$
365	0.154	2.8	38.29
420	0.1268	2.65	28.87
450	0.1067	2.2	27.36
500	0.0821	2.24	18.65
550	0.0295	2.18	6.25

Calculating AQY according to the following equations:
$\operatorname{AQY}(\%)=\frac{\text { Number of reacted electrons }}{\text { Number of incident photons }} \times 100 \%$
Number of evolved O_{2} molecules $\times 4$
$=\xrightarrow{ } \times 100 \%$
Number of incident photons
$=\frac{\mu \mathrm{mol} \times \mathrm{N}_{\mathrm{A}} \times 10^{-6} \times 4}{\frac{\mathrm{I} \times \mathrm{A} \times \mathrm{t}}{\mathrm{E}_{\mathrm{g}} \times \mathrm{J}}} \times 100 \%$
In which $\mathrm{N}_{\mathrm{A}}=6.02 * 10^{23}, \mathrm{Eg}=1240 / \lambda,(\lambda=420 \mathrm{~nm}), \mathrm{A}($ area $)=3.14 \mathrm{~cm}^{2}, \mathrm{t}$ (time) $=60 \mathrm{~s}, \mathrm{~J}=1.6^{*} 10^{-19} \mathrm{j}$.

Fig.S10 The spectrum of the 300 W Xenon lamp equipped with CUT 420 nm monochromatic filter.

[^0]: ${ }^{\text {a }}$ Y. Zhang, W. Han, L. Ding, Dr. F. Fang, Dr. Z. Xie, Prof. K. Chang
 a. Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China. E-mail: changkun@nuaa.edu.cn
 ${ }^{b}$ Xianglei Liu
 b. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China

