Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

The Solvent-free Continuous Flow Hydrogenation of N-Methyl Pyrrolidone to N-methylpyrrolidine catalyzed with bimetallic Pt/V on HAP

Pengxiang Gao,^a Song Liu,^a Jitao Yang,^a Dishun Zhao,^b Qingbin Liu,^{*a}

^a Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China, E-mail: Liuqingbin@hebtu.edu.cn

^b College of Chemical Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China

Contents

S1. General information and methods .	
S2. Reactor equipment specifications.	
S3. The results of the yields of N-me	thylpyrrolidine under specified
conditions each hour	
S4. Identification of N-methylpyrrolid	ine
S5. Identification of by-products	
References	

S1. General information and methods

Pt(acac)₂, VO(acac)₂, Hydroxyapatite(HAP) were all purchased from Innochem Co. Ltd., and used without any further purification. N-methylpyrrolidone was purchased from Damao Chemical Reagent Factory and used as received. The Pt/V/HAP catalyst was prepared refer to S1.

S2. Reactor equipment specifications

The reactor was usd for solid catalytic reactions under continuous flow conditions, and the reactor was purchased from Yanzheng Shanghai Experimental Instrument Co., LTD., and the H_2 used in the reactor was fed in to the system from a steel cylinder.

S3. The results of the yields of N-methylpyrrolidine under specified conditions each hour

S3.1 Pt/V/HAP (Pt/V molar ratio = 1:5)

	5 515	5
Time (h)	Yield (%)	Conversion (%)
1	52.71	52.71
2	50.57	50.57
3	33.51	33.51
4	25.40	25.40
5	20.57	20.57
6	18.84	18.84
7	22.41	22.41
Average	32.00	32.00

Table S1 The yields of N-methylpyrrolidine every hour ^a

^a Pt/V molar ratio = 1:5, temperature = 220 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

S3.2 Pt/V/HAP (Pt/V molar ratio=1:1)

Table S2	The vie	lds of N-	-methylpyri	rolidine every	/ hour ^a

	5 5 1 5	5
Time (h)	Yield (%)	Conversion (%)
1	71.19	73.17
2	70.25	72.06
3	69.00	69.03
4	66.53	67.50
5	65.55	66.92
6	66.37	66.39
7	64.70	65.70
Average	67.66	68.68

^a Pt/V molar ratio = 1:1, temperature = 220 °C, pressure of H_2 = 20 bar, flow rate of H_2

= 100 sccm, WHSV = 1.2 h⁻¹

Table So The yields of ty menufpyfrondine every nour		
Yield (%)	Conversion (%)	
88.50	95.21	
86.19	92.06	
86.64	92.58	
85.45	92.13	
83.34	93.78	
86.88	86.88	
78.49	83.75	
85.07	90.91	
	Yield (%) 88.50 86.19 86.64 85.45 83.34 86.88 78.49	

S3.3 Pt/V/HAP (Pt/V molar ratio=1:0.5)

Table S3 The yields of N-methylpyrrolidine every hour^a

^a Pt/V molar ratio = 1:0.5, temperature = 220 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

 Table S4 The yields of N-methylpyrrolidine every hour at 210 °C and the same as

	5	
Time (h)	Yield (%)	Conversion (%)
1	84.02	89.29
2	93.88	96.9
3	87.71	89.94
4	86.73	88.75
5	86.60	88.46
6	86.20	87.91
7	85.64	87.42
Average	87.25	89.81

entry 13 in Table 2^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	77.68	81.81
2	93.47	95.29
3	84.76	85.57
4	59.38	59.91
5	58.94	59.35
6	60.60	60.91
7	58.99	59.30
Average	70.55	71.73

Table S5 The yields of N-methylpyrrolidine every hour at 200 °C ^a

^a Pt/V molar ratio = 1:0.5, temperature = 200 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Table S6 The yields of N-methylpyrrolidine every hour at 230 °C ^a

Time (h)	Yield (%)	Conversion (%)
1	78.47	83.97
2	79.47	91.99
3	79.86	93.16
4	81.03	94.25
5	81.01	93.69
6	59.69	63.15
7	72.43	80.87
Average	75.99	85.87

^a Pt/V molar ratio = 1:0.5, temperature = 230 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	56.57	77.19
2	71.77	90.31
3	69.46	87.90
4	70.51	92.02
5	69.82	92.33
6	71.37	91.60
7	71.39	93.65
Average	68.70	89.29

Table S7 The yields of N-methylpyrrolidine every hour at 240 °C ^a

^a Pt/V molar ratio = 1:0.5, temperature = 240 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Table S8 The yields of N-methylpyrrolidine every hour at 30 bar ^a

Time (h)	Yield (%)	Conversion (%)
1	83.78	90.69
2	93.67	96.52
3	68.10	73.94
4	66.85	68.35
5	67.11	68.07
6	80.29	81.49
7	76.78	77.77
Average	76.65	79.55

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 30 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	76.68	77.92
2	80.49	81.30
3	79.27	80.24
4	85.42	89.79
5	89.38	92.17
6	81.09	82.15
7	65.91	66.88
Average	79.75	81.49

Table S9 The yields of N-methylpyrrolidine every hour at 25 bar^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H₂=25 bar, flow rate of H₂=100 sccm, WHSV = $1.2 h^{-1}$

Table S10 The yields of N-methylpyrrolidine every hour at 15 bar^a

Time (h)	Yield (%)	Conversion (%)
1	73.40	75.65
2	79.82	82.00
3	80.06	82.23
4	81.21	83.39
5	79.58	82.17
6	80.52	82.70
7	80.93	83.08
Average	79.36	81.60

^a Pt/V molar ratio=1:0.5, temperature = 210 °C, pressure of H_2 =15 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Yield (%)	Conversion (%)
73.08	77.75
78.68	81.44
73.10	76.17
67.20	71.10
71.12	74.80
69.77	73.39
69.87	73.43
71.83	75.44
	73.08 78.68 73.10 67.20 71.12 69.77 69.87

Table S11 The yields of N-methylpyrrolidine every hour at 10 bar^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 10 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Table S12 The yields of N-methylpyrrolidine every hour at 0 sccm^a

Time (h)	Yield (%)	Conversion (%)
1	22.88	24.15
2	10.82	10.88
3	6.89	8.30
4	7.47	8.75
5	7.72	10.88
6	6.89	8.30
7	7.47	8.75
Average	10.02	11.43

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 =20 bar, flow rate of H_2 = 0 sccm, WHSV = 1.2 h⁻¹

5 1 5	2
Yield (%)	Conversion (%)
59.24	69.39
56.60	63.88
53.33	55.44
38.71	39.97
47.81	48.95
42.72	43.89
42.11	43.44
48.65	52.14
	Yield (%) 59.24 56.60 53.33 38.71 47.81 42.72 42.11

Table S13 The yields of N-methylpyrrolidine every hour at 50 sccm^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 50 sccm, WHSV = 1.2 h⁻¹

J	5 1 5	J
Time (h)	Yield (%)	Conversion (%)
1	88.29	90.88
2	91.37	94.01
3	91.21	94.13
4	85.05	92.65
5	93.09	96.05
6	90.77	96.32
7	91.11	94.45
Average	90.13	94.07

Table S14 The yields of N-methylpyrrolidine every hour at 150 sccm^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 150 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	87.89	92.18
2	91.08	95.09
3	91.00	96.48
4	89.18	96.18
5	92.60	96.31
6	93.60	97.07
7	91.17	95.50
Average	90.93	95.54

Table S15 The yields of N-methylpyrrolidine every hour at 200 sccm^a

^a Pt/V molar ratio=1:0.5, temperature=210 °C, pressure of H_2 =20 bar, flow rate of H_2 = 200 sccm, WHSV = 1.2 h⁻¹

Table S16 The yields of N-methylpyrrolidine every hour of entry 1 in Table 2 ^a

Time (h)	Yield (%)	Conversion (%)
1	53.36	54.63
2	59.45	61.20
3	66.08	66.33
4	62.11	62.40
5	68.58	68.82
6	68.80	69.10
7	68.44	68.72
Average	63.83	64.46

^a Pt/V molar ratio = 1:0.5, temperature = 200 °C, pressure of H_2 = 15 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	69.26	72.89
2	71.44	73.19
3	78.51	88.95
4	63.20	79.52
5	65.29	81.39
6	63.86	66.22
7	71.22	73.33
Average	68.97	76.50

Table S17 The yields of N-methylpyrrolidine every hour of entry 2 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 220 °C, pressure of H_2 = 15 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

	•
Yield (%)	Conversion (%)
78.50	83.81
71.32	71.73
72.04	73.67
61.16	62.19
57.14	62.84
57.39	57.74
42.98	43.29
62.93	65.04
	Yield (%) 78.50 71.32 72.04 61.16 57.14 57.39 42.98

Table S18 The yields of N-methylpyrrolidine every hour of entry 3 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 200 °C, pressure of H_2 = 25 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	55.73	56.12
2	69.79	70.80
3	79.26	81.03
4	82.91	85.39
5	83.92	86.27
6	83.28	85.72
7	81.20	83.65
Average	76.57	78.43

Table S19 The yields of N-methylpyrrolidine every hour of entry 4 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 220 °C, pressure of H_2 = 25 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Table S20 The yields of N-methylpyrrolidine every hour of entry 5 in Table 2 ^a

Time (h)	Yield (%)	Conversion (%)
1	48.77	50.31
2	32.64	33.53
3	29.48	29.63
4	29.85	30.17
5	27.43	28.03
6	26.50	26.81
7	28.45	26.81
Average	31.87	32.46

^a Pt/V molar ratio = 1:0.5, temperature = 200 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 50 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	47.41	48.46
2	48.44	49.89
3	47.31	48.45
4	44.88	47.57
5	39.48	41.43
6	38.48	39.71
7	34.95	36.47
Average	42.99	44.57

Table S21 The yields of N-methylpyrrolidine every hour of entry 6 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 220 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 50 sccm, WHSV = 1.2 h⁻¹

 Table S22 The yields of N-methylpyrrolidine every hour of entry 7 in Table 2 a

Time (h)	Yield (%)	Conversion (%)
1	82.57	84.30
2	69.00	70.03
3	85.85	86.15
4	71.60	71.91
5	82.18	82.29
6	70.45	70.56
7	68.81	68.89
Average	75.78	76.30

^a Pt/V molar ratio = 1:0.5, temperature = 200 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 150 sccm, WHSV = 1.2 h⁻¹

Yield (%)	
1 ICIU (70)	Conversion (%)
71.27	71.78
77.53	81.35
86.16	92.20
71.18	73.10
70.43	71.26
81.80	88.17
55.51	58.08
73.41	76.56
	71.27 77.53 86.16 71.18 70.43 81.80 55.51

Table S23 The yields of N-methylpyrrolidine every hour of entry 8 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 220 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 150 sccm, WHSV = 1.2 h⁻¹

 Table S24 The yields of N-methylpyrrolidine every hour of entry 9 in Table 2 a

Time (h)	Yield (%)	Conversion (%)
1	71.20	75.26
2	49.31	55.77
3	41.42	43.74
4	30.83	36.89
5	33.18	37.57
6	37.99	39.53
7	34.04	35.52
Average	42.57	46.33

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 15 bar, flow rate of H_2 = 50 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	31.33	36.01
2	29.01	31.57
3	44.53	46.40
4	47.17	51.82
5	45.44	49.65
6	41.63	46.09
7	41.26	42.62
Average	40.05	43.45

Table S25 The yields of N-methylpyrrolidine every hour of entry 10 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 25 bar, flow rate of H_2 = 50 sccm, WHSV = 1.2 h⁻¹

 Table S26 The yields of N-methylpyrrolidine every hour of entry 11 in Table 2 a

Time (h)	Yield (%)	Conversion (%)
1	45.75	46.73
2	72.16	74.21
3	78.11	80.67
4	72.16	72.88
5	80.33	81.29
6	76.70	77.83
7	80.26	81.73
Average	72.21	73.62

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 15 bar, flow rate of H_2 = 150 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	69.58	72.06
2	87.88	89.99
3	90.40	91.80
4	80.61	81.68
5	81.37	82.09
6	74.03	74.48
7	82.45	83.20
Average	80.90	82.19

Table S27 The yields of N-methylpyrrolidine every hour of entry 12 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 210°C, pressure of H_2 = 25 bar, flow rate of H_2 = 150 sccm, WHSV = 1.2 h⁻¹

Table S28 The yields of N-methylpyrrolidine every hour of entry 14 in Table 2 ^a

Time (h)	Yield (%)	Conversion (%)
1	88.93	89.55
2	84.34	85.59
3	82.63	84.07
4	84.17	87.26
5	85.62	87.06
6	84.71	86.66
7	85.72	87.72
Average	85.16	86.85

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	88.85	93.55
2	85.89	95.26
3	88.55	91.74
4	87.64	90.18
5	87.65	90.03
6	85.96	89.11
7	89.98	93.66
Average	87.79	91.93

Table S29 The yields of N-methylpyrrolidine every hour of entry 15 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Table S30 The yields of N-methylpyrrolidine every hour of entry 16 in Table 2 ^a

Time (h)	Yield (%)	Conversion (%)
1	84.81	86.89
2	85.91	87.89
3	86.37	88.89
4	86.11	88.60
5	85.12	87.13
6	86.51	88.78
7	86.16	88.64
Average	85.86	88.12

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	86.66	88.60
2	85.84	87.47
3	84.96	86.95
4	85.60	87.70
5	86.21	88.53
6	86.36	89.23
7	86.19	87.42
Average	85.97	87.99

Table S31 The yields of N-methylpyrrolidine every hour of entry 17 in Table 2 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 210 °C, pressure of H_2 = 20 bar, flow rate of H_2 = 100 sccm, WHSV = 1.2 h⁻¹

2	5 1 5	5
Time (h)	Yield (%)	Conversion (%)
1	82.97	96.02
2	83.99	98.47
3	84.57	98.70
4	83.07	98.57
5	83.67	98.58
6	83.76	98.67
7	83.97	98.68
Average	83.71	98.24

Table S32 The yields of N-methylpyrrolidine every hour at WHSV=0.4 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 211 °C, pressure of H_2 = 21 bar, flow rate of H_2 = 123 sccm, WHSV = 0.4 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	87.13	98.96
2	88.25	96.72
3	89.72	96.98
4	91.53	97.86
5	92.60	98.72
6	91.03	97.95
7	91.12	97.76
Average	90.20	97.85

Table S33 The yields of N-methylpyrrolidine every hour at WHSV=0.8 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 211 °C, pressure of H_2 = 21 bar, flow rate of H_2 = 123 sccm, WHSV = 0.8 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	73.53	78.83
2	74.52	76.32
3	75.72	76.94
4	76.68	77.50
5	78.20	78.87
6	79.35	79.99
7	76.14	76.70
Average	76.31	77.88

Table S34 The yields of N-methylpyrrolidine every hour at WHSV=1.6 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 211 °C, pressure of H_2 = 21 bar, flow rate of H_2 = 123 sccm, WHSV = 1.6 h⁻¹

Time (h)	Yield (%)	Conversion (%)
1	68.20	68.64
2	62.15	62.78
3	66.22	66.73
4	63.77	64.04
5	66.74	67.12
6	61.90	62.28
7	63.22	63.61
Average	64.60	65.03

Table S35 The yields of N-methylpyrrolidine every hour at WHSV=2.0 ^a

^a Pt/V molar ratio = 1:0.5, temperature = 211 °C, pressure of H_2 = 21 bar, flow rate of H_2 = 123 sccm, WHSV = 2.0 h⁻¹

S3.4 Pt/V/HAP (Pt/V molar ratio=1:0.25)

Table S36 The yields of N-methylpyrrolidine every ho	our ^a

Yield (%)	Conversion (%)
47.18	48.03
59.86	62.08
53.56	72.17
66.15	69.60
69.13	71.10
59.55	63.77
42.31	43.71
58.43	63.74
	47.18 59.86 53.56 66.15 69.13 59.55 42.31

^a Pt/V molar ratio = 1:0.25, temperature = 220 °C, pressure of H₂=20 bar, flow rate of H_2 =100 sccm, WHSV = 1.2 h⁻¹

S4. Identification of N-methylpyrrolidine

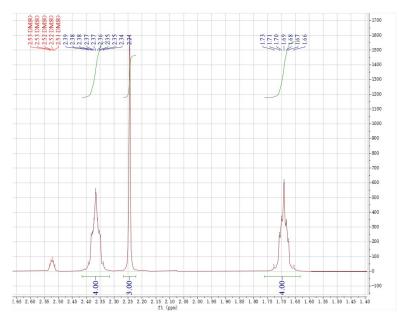


Fig.S1 The ¹H NMR spectrum of NMPD

¹H NMR (400 MHz, DMSO-D₆), δ: 1.66- 1.73 (m,4H),2.24(s,3H),2.34-2.39(m,4H)

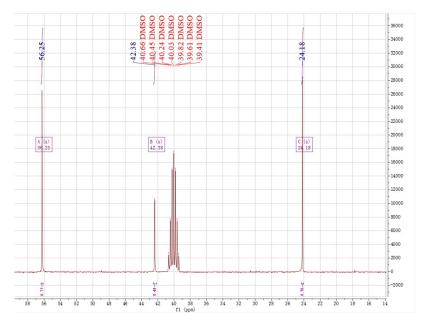


Fig.S2 The ¹³C NMR spectrum of NMPD

¹³C NMR (400 MHz, DMSO-D₆), δ: 24.18, 42.38, 56.25

S5. Identification of by-products

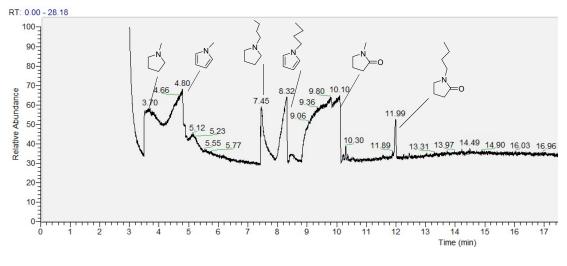


Fig.S3 The GC-MS of crude product

Some unexpected byproducts were synthesized under the condition of temperature = 340 °C, pressure of $H_2 = 20$ bar, flow rate of $H_2 = 100$ sccm, weight hourly space velocity = 1.2 h⁻¹, Pt/V/HAP (Pt/V molar ratio = 1:5) as the catalysts. The by-products, N-methylpyrrole, N-butylpyrrole, N-butylpyrrolidine and 1-butylpyrrolidine-2-one were detected. Probably because the exorbitant temperature could cause the dehydrogenation of NMPD to create N-methylpyrrole, at the same time, the ring of the NMPD was opened with the N-C bond broken, providing the n-butyl and prompting the N-butylpyrrole, N-butylpyrrolidine and 1-butylpyrrolidine-2-one formed.

References

S1 T. Mitsudome, K. Miyagawa, Z. Maeno, T. Mizugaki, K. Jitsukawa, J. Yamasaki,Y. Kitagawa, K. Kaneda, *Angew. Chem. Int. Ed.*, 2017, **129**, 9509-9513.