Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Cerium versus zirconium UiO66 metal organic frameworks in coupling with CdS for H₂ evolution under visible light

Wenqing Hou, ^a Chen Chen, ^a Yaru Wang ^a and Yiming Xu*^a

State Key Laboratory of Silicon Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

* To whom correspondence should be addressed. Fax: +86 57187951895, Email: xuym@zju.edu.cn

Contents	Pages
Experimental procedures for sample synthesis	2/7
Table S1. Amounts of reagents used for synthesis	3/7
Table S2. Band gap energy estimation	
Table S3. XPS peak assignment	
Figure S1. SEM and TEM images	4/7
Figure S2–S3. N ₂ adsorption, XRD, absorption spectra and E_{g} calculation	5/7
Figure S4-S5. XPS spectra and solid characterization for others	
Figure S6. Characterization for irradiated solid and a six-repeat stability test	6/7
Figure S7-S9. (Photo)electrochemical date	7/7
References	

Experimental procedures for sample synthesis

Ce-U66 and CdS/Ce-U66. Ce-U66 was prepared according to previous report.¹ Terephthalic acid (286 mg, 1.72 mmol) was dissolved in 9.6 mL of DMF, and then mixed with $Ce(NH_4)_2(NO_2)_6$ (3.2 mL, 0.535 M). The mixture was stirred at 100 °C for 15 min. After that, the precipitate was collected by centrifugation, washed three times with DMF and ethanol, respectively, and dried under a vacuum oven (60 °C, 12 h) CdS/Ce-U66 was prepared with the same procedure used for the synthesis of CdS/Ce-U66(NH₂).

Zr-U66 and CdS/Zr-U66. Zr-U66 was synthesized according to previous report.² ZrCl₄ (233 mg) and terephthalic acid (166 mg) were dispersed in DMF (50 mL), followed by addition of 150 μ L acetic acid. After heating at 120 °C for 24 h, the solid was collected, washed with DMF and ethanol several times, respectively, and dried under a vacuum oven at 60 °C overnight. Then 40% CdS/Zr-UiO-66 was synthesized with the same procedure used for the synthesis of CdS/Ce-U66(NH₂).

Zr-U66(NH₂) and CdS/Zr-U66(NH₂). Zr-U66-NH₂ was synthesized according to previous report.² ZrCl₄ (233 mg) and 2-aminoterephthalic acid (181 mg) were dispersed in DMF (50 mL), followed by addition of 150 μ L H₂O. After heating at 120 °C for 24 h, the solid was collected, washed with DMF and ethanol several times, respectively, and dried under a vacuum oven at 60 °C overnight. Then 40% CdS/Zr-UiO-66-NH₂ was synthesized with the same procedure used for the synthesis of CdS/Ce-U66(NH₂).

0.5% Pt/CdS and 0.5% Pt/Ce-U66(NH₂). A mixture of $3.2 \,\mu$ L H₂PtCl₆ solution (8 wt%), 50 mL sacrifice aqueous solution (0.35 M Na₂S, and 0.25 M Na₂SO₃), and 25 mg CdS or Ce-U66(NH₂) was purged with N₂ for 30 min, and then irradiated for 2 h with four 3 W LED lamps (420 nm). After that, the solid was collected by centrifugation, washed with water, and dried in a vacuum oven at 60 °C overnight.

References

 M. Lammert, M. T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K. A. Lomachenko, D. D. Vos and N. Stock, *Chem. Commun.*, 2015, **51**, 12578–12581.
C. Gomes Silva, I. Luz, F. X. Llabrés i Xamena, A. Corma and H. García, *Chem. Eur. J.*, 2010, **16** 11133–11138.

Table S1. Recipe for synthesis of CdS/Ce-U66(NH₂) samples

Reagents	30% CdS	40% CdS	50% CdS	60% CdS	CdS
Ce-U66(NH ₂) (mg)	70	60	50	40	0
$Cd(CH_3COO)_2 \cdot 2H_2O$ (mg)	55.3	73.8	92.2	110.6	184.4
$Na_2S \cdot 9H_2O$ (mg)	49.8	66.4	83.0	99.6	166

Table S2. Band gap energies estimated through different methods^a

Samples	E _{sp} (eV)	E _{diff} (eV)	E _{g, direct} (eV)	E _{g, indirect} (eV)
Zr-U66	3.92	3.85	4.00	3.82
Ce-U66	3.05	2.95	3.18	2.98
Zr-U66(NH ₂)	2.80	2.85	2.82	2.65
Ce-U66-66(NH ₂)	1.92	_	2.86	1.60
CdS	2.25	2.25	2.38	2.08

 ${}^{a}E_{sp}$ is the spectral edge, while E_{diff} , $E_{g, direct}$, and $E_{g, indirect}$ are the differentiated, direct and indirect band gap energies, respectively. Please see the details in Fig. S3. Because E_{diff} is independent of the transition type, its value is used as the working band gap energy. However, the E_{diff} for Ce-U66(NH₂) was not clearly defined. Then the E_{sp} is used as the working band gap energy for Ce-U66(NH₂).

Table S3. XPS analysis for Ce³⁺ and Ce⁴⁺ species in different samples^a

Spacios -	U66(Ce)-NH ₂		40% CdS/U66(Ce)-NH ₂			^b 40% CdS/U66(Ce)-NH ₂			
species	BE (eV)	Α	Y (%)	BE (eV)	А	Y (%)	BE (eV)	Α	Y (%)
Ce ³⁺	881.2	5322		881.3	3963		881.3	5907	
	885.6	66820	45.4	885.7	31254	1E 1	885.6	46795	40.5
	899.4	21364		899.4	14230	45.1	899.4	18903	
	904.0	112709		904.0	41811		904.0	53462	
Ce ⁴⁺	883.0	58591		883.0	38520		882.8	44138	
	887.5	52388	54.6	887.6	22316		887.6	35676	59.5
	898.4	4322		898.5	2041	E4 0	898.5	7336	
	901.5	23936		901.5	10051	54.9	901.3	22936	
	907.4	49349		907.5	20006		907.4	37996	
	917.1	59796		917.1	18022		917.0	35627	

^aBE, binding energy; A, peak area; Y, relative content. ^bAfter 8 h photoreaction.

Fig. S1 SEM images (top two panels) for (A) Ce-U66, (B) Ce-U66(NH₂), (C) CdS, (D) 40% CdS/ Ce-U66(NH₂), and (E-I) Elemental mapping for 40% CdS/Ce-U66(NH₂). TEM images (bottom panel) for (J) Ce-U66(NH₂), (K) CdS, and (L) 40% CdS/Ce-U66(NH₂).

Fig. S2 (A, B) Adsorption and desorption isotherms N_2 , (C) BJH pore size distribution, (D) XRD patterns, and (E) absorption spectra for *x*CdS/Ce-U66(NH₂), where *x* was (a) 0, (b) 30, (c) 40, (d) 50, and (e) 60 wt%. The column bars represent the patterns for cubic CdS (PDF 80-0019).

Fig. S3 Spectral edge (E_{sp}) , differentiated band gap energy (E_{diff}) , direct transition band gap energy $(E_{g, direct})$, and indirect transition band gap energy $(E_{g, indirect})$. The calculation is based on the equation of $\alpha E_{hv} = a(E_{hv} - E_g)^m$, where α is absorption coefficient, E_{hv} is light energy, a is constant, E_g is band gap energy (m = 0.5, direct; m = 2, indirect). From the equation, we have $d(\alpha E_{hv})/dE_{hv} = m/(E_{hv} - E_g)$. Then $d(\alpha E_{hv})/dE_{hv}$ is infinite at $E_{hv} = E_g$, which is E_{diff} , and is independent of m. These values are compiled in Table S2.

Fig. S4 XPS spectra for (a) CdS, (b) 40% CdS/Ce-U66(NH₂), and (c) Ce-U66(NH₂).

Fig. S5 (A) XRD patterns and (B) N₂ adsorption/desorption isotherms for differnt samples.

Fig. S6 (A) XRD patterns, (B) FT-IR spectra, and (C–E) XPS spectra for 40%CdS/Ce-U66(NH₂), (a) before and after H₂ production for 8 h. (F) Six-repeat production of H₂ on 40%CdS/Ce-U66(NH₂). After one run, the suspension was purged with N₂ for 30 min, and then irradiated, without addition of any new components.

Fig. S7 Curve fitting for proton reduction (top panels) and water oxidation (bottom panels).

Fig. S8 (A) Nyquist plots at 0.2 V vs. NHE for (a) CdS, (b) Ce-U66(NH₂), (c) 40% CdS/Ce-U66(NH₂), measured in 0.5 M NaClO₄ under N₂. The solid curves match an equivalent circuit model (insert), where R_1 is series resistance, R_2 is charge transfer resistance, and CPE₁ is bulk capacitance. (B) Measured and calculated emission intensity for CdS/Ce-U66(NH₂), where the CdS content was measured by ICP.

Fig. S9 Mott–Schottky plots for the samples as indicated by the legends. Experiment was conducted at different frequencies in a bubbling N_2 of 0.5 M NaClO₄.