Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Mechanistic Kinetic Modeling for Catalytic Conversion of DME to Gasoline-range Hydrocarbons over Nanostructured ZSM-5

Damin Lee^{a,1}, Jong Jin Kim^{b,1}, Mansoor Ali^b, Jin Woo Choung^c, Won Bo Lee^{a,*}, Jong Wook Bae^{b,*}, Myung-June Park^{d,e,*}

^a School of Chemical & Biological Engineering, Seoul National University, Seoul 08826,

Republic of Korea

^b School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea

^c Hyundai Motor Company, Uiwang, Gyeonggi-do 16082, Republic of Korea

^d Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea

^e Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea

¹ D. Lee and J.J. Kim equally contributed to this work.

*Corresponding authors: wblee@snu.ac.kr (W. B. Lee), finejw@skku.edu (J. W. Bae), mjpark@ajou.ac.kr (M.-J. Park)

Run	T [K]	P _{total} [bar]	GHSV [L/(kg _{cat} ·h]	DME/N ₂ [Molar ratio%]					
1	573	1	4400	5/95					
2	553	1	4400	5/95					
3	533	1	4400	5/95					
4	523	1	4400	5/95					
5	513	1	4400	5/95					
6	573	3	4400	5/95					
7	553	3	4400	5/95					
8	533	3	4400	5/95					
9	523	3	4400	5/95					
10	513	3	4400	5/95					
11	573	5	4400	5/95					
12	553	5	4400	5/95					
13	533	5	4400	5/95					
14	523	5	4400	5/95					
15	513	5	4400	5/95					
16	533	1	2200	5/95					
17	533	1	8800	5/95					
18	533	1	10000	5/95					

Table S1. Experimental conditions for DTH reaction on the nano-structured ZSM-5

XRF ^a	N	2 sorption ^t)	XRD ^c	1	NH ₃ -TPD	Py-IR ^e	$dTBPy\text{-}IR^{\mathrm{f}}$			
Si/Al	Sg	$P_{\rm V}$	P _D	d _P	S_{W}	Ss	\mathbf{S}_{T}	B/L	AF		
72	373	0.27	3.9	35	0.19	0.27	0.46	22.1	0.05		

Table S2. Textural and surface properties of nano-structured ZSM-5 zeolite

^a Si/Al molar ratio on the fresh nano-structured ZSM-5 was determined by XRF analysis.

^b S_g (sirface area, m²/g), P_V (pore volume, cm³/g) and P_D (averge pore diameter, nm) were determiced by N₂-sorption analysis with the help of BET equation.

^c Average crystallite size of ZSM-5 were measured by Scherrer equation from the most intense XRD peak at $2\theta = 7 - 9^{\circ}$.

^d Quantities of weak (S_W, mmol/g) and strong (S_S, mmol/g) acid sites as well as total acid sites (S_T, mmol/g) were determined by the integrated areas of NH₃-TPD peaks located at 393 – 523 and 523 – 823 K, respectively.

^e Quantities of Brønsted (B) and Lewis (L) acid sites and ratio of B/L were calculated from the Py-IR spectra obtained at a desorption temperature of 523 K.

^f Accessibility factor (AF) correpsonding to the percentage of outer surface acidic sites (external acidic sites) were calculated by the adsorption sites for 2,6-di-tert-butylpyridine (dTBPy) divided by total amount of acid sites measured by Py-IR analysis.

T [K] [L	SV	р	DME Conv. (mol%)	Mole fractions of effluent gases (%) ^a																	
	[L/kg _{cat} /h]	[bar]		C1	C2	C3	C4	C5	MTBE	C6	Benzene	C7	Toluene	C8	Ethyl benzene	m,p-X	o-X	C9 EMB	TMB	etc	Carbon balance(%)
573	4400	1	100.0	0.1	3.3	18.7	14.7	12.3	2.9	12.9	0.9	8.5	1.0	4.4	0.2	2.7	1.0	3.0 6.6	1.1	5.7	102.4
553	4400	1	100.0	0.1	4.5	14.7	11.9	11.1	2.8	14.3	0.6	11.0	0.5	7.3	0.1	2.5	1.2	2.7 6.9	0.9	7.1	100.6
533	4400	1	57.8	0.1	5.4	29.9	10.5	6.1	1.3	10.3	0.5	9.6	0.3	6.8	0.0	2.1	0.9	2.2 6.5	1.1	6.2	102.2
523	4400	1	44.6	0.3	7.1	31.4	10.0	5.9	0.7	9.1	0.2	9.2	1.6	3.7	0.0	1.7	1.2	0.8 7.2	1.0	9.0	101.1
513	4400	1	28.8	0.3	5.8	36.1	11.8	5.0	0.8	8.0	0.3	8.5	1.7	3.3	0.1	1.6	1.1	0.8 6.4	0.9	7.4	98.2
573	4400	3	100.0	0.2	1.9	17.1	8.3	14.4	1.2	14.3	1.0	8.7	1.1	4.3	0.2	3.0	1.1	3.1 7.8	1.1	11.3	97.8
553	4400	3	100.0	0.3	3.7	12.1	6.9	12.6	1.3	15.8	0.6	11.9	0.5	6.8	0.1	2.3	1.2	2.7 7.5	0.9	12.8	102.2
533	4400	3	62.0	0.4	8.5	22.2	6.1	7.5	0.5	10.9	0.3	9.9	0.3	6.7	0.0	2.1	1.0	2.2 8.5	1.0	12.0	104.1
523	4400	3	46.0	0.6	9.2	27.0	7.9	6.7	0.2	8.8	0.2	8.3	1.5	3.5	0.0	1.7	1.2	1.0 8.2	1.3	12.8	100.9
513	4400	3	20.0	0.6	6.3	38.8	11.3	3.7	0.4	4.7	0.5	5.4	0.2	4.3	0.0	1.6	0.7	2.1 6.9	1.0	11.1	102.4
573	4400	5	100.0	0.2	1.2	16.9	7.4	14.8	0.8	14.9	0.9	9.4	1.5	4.3	0.3	3.2	1.2	3.5 7.1	1.4	11.0	97.7
553	4400	5	100.0	0.3	3.0	12.2	6.2	13.5	1.0	16.2	0.6	12.1	0.6	6.9	0.1	2.3	1.0	2.8 7.4	0.9	13.0	100.7
533	4400	5	64.5	0.4	8.1	19.2	6.0	7.2	0.4	9.7	0.4	8.8	0.3	6.0	0.0	2.0	1.0	2.4 8.7	1.2	18.1	105.1
523	4400	5	52.9	0.6	9.6	25.7	7.5	7.2	0.3	9.0	0.2	8.4	1.5	3.5	0.0	1.7	1.1	1.0 8.2	1.3	13.2	103.1
513	4400	5	20.9	0.7	6.4	35.8	10.9	3.7	0.5	4.2	0.4	4.5	0.2	3.5	0.0	1.5	0.6	1.7 7.1	1.1	17.2	99.2
533	2200	1	92.9	0.2	5.6	14.1	8.4	9.4	1.5	14.4	0.5	12.0	0.4	7.5	2.3	0.3	1.1	2.6 7.4	1.1	11.2	98.5
533	8800	1	38.6	0.2	4.1	36.1	14.3	5.3	1.6	8.4	0.6	8.1	0.2	5.3	1.4	0.3	0.5	2.4 4.4	1.2	5.6	101.2
533	10000	1	33.5	0.2	4.1	41.4	14.0	4.1	1.5	7.6	0.6	7.5	0.2	5.4	0.0	2.0	0.4	1.6 4.8	0.8	4.0	98.8

 Table S3. Detailed products distributions and DME conversions at 18 different reaction conditions such as temperatures, space velocities, and pressures

^aProducts distributions were verified by using the gaseous effluent chemicals at the reaction conditions of T = 573–513 K, P = 1–5 bar and GHSV = 4400–10000 L/(kg_{cat}·h) with DME/N₂ = 5/95 (mol%), and the abbreviations of m,p,o-X, EMB and TMB stand for m,p,o-Xylene, ethylmethylbenzene and tetramethylbenzene, respectively.

Figure S1. Bulk and surface properties of the fresh nano-structured ZSM-5; (a) Pore size distribution measured by N₂ adsorption-desorption analysis, (b) NH₃ TPD patterns, (c) Characteristic Py-IR spectra at three different desorption temperatures of 423, 523, 623 K and (d) characteristic DTBPy-IR spectra.

Figure S2. Representative reaction results of (1) DME conversion and (2) product distributions of gaseous and liquid products at different temperatures and pressures such as (A) 1 bar, (B) 3 bar, and (C) 5 bar.

Figure S3. Sensitivity analysis of the conversion and product selectivities to the estimated parameters of the model.