Supplementary Information

Enhanced Ni-Ce interactions enable efficient lowtemperature catalytic CO₂ methanation

Zhihe Zhang^[a], Kai Feng^[a], Binhang Yan^{*[a]}

[a] Z. Zhang, K. Feng, Prof. B. Yan

Department of Chemical Engineering, Tsinghua University, Beijing 100084, China Email: binhangyan@tsinghua.edu.cn

Figure S1: The activity comparison of Ni/CeO₂ catalysts synthesized by the

improved and conventional co-precipitation methods a 40% Ni/CeO_2 b 63% Ni/CeO_2

Fig S2: a XRD patterns of the calcined 63% Ni/CeO₂-CP and 63% Ni/CeO₂-IM catalysts, **b** XRD patterns of the calcined 15% Ni/CeO₂-CP and 15% Ni/CeO₂-IM catalysts.

Fig S3: a XRD patterns of the reduced and spent 63% Ni/CeO₂-CP and 63% Ni/CeO₂-IM catalysts **b** Raman spectra of the spent 63% Ni/CeO₂-CP and 63% Ni/CeO₂-IM catalysts

Fig S4: TEM images of the reduced **a** 63% Ni/CeO₂-CP and **b** 63% Ni/CeO₂-IM catalysts.

Fig S5: Fitting XPS spectra of **a** Ni2p, **b** Ce3d, and **c** O1s for the reduced 63% Ni/CeO₂-CP and 63% Ni/CeO₂-IM catalysts.

Fig S6: H₂-TPR results of 63% Ni/CeO₂-CP, 63% Ni/CeO₂-IM, 15% Ni/CeO₂-CP, and 15% Ni/CeO₂-IM.

Fig S7: XPS spectra of **a** Ni2p, **b** Ce3d, and **c** O1s for the reduced 15% Ni/CeO₂-CP and 15% Ni/CeO₂-IM catalysts. Fitting XPS spectra of **d** Ni2p, **e** Ce3d, and **f** O1s for the reduced 15% Ni/CeO₂-CP and 15% Ni/CeO₂-IM catalysts.

Fig S8: LCF of XANES spectra for the reduced **a** 63% Ni/CeO₂-CP, **b** 63% Ni/CeO₂-IM, **c** 15% Ni/CeO₂-CP, and **d** 15% Ni/CeO₂-IM catalysts.

Fig S9: Comparisons between the reduced 15% Ni/CeO₂-CP and 15% Ni/CeO₂-IM catalysts **a** XANES spectra, **b** EXAFS spectra.

Fig S10: Intensity variation curves of a 1560 cm⁻¹ (Formates), b 1490 cm⁻¹ (Monodentate carbonates), c 1504~1510 cm⁻¹ (Bidentate carbonates), d 1445 cm⁻¹ (Polydentate carbonates), and e gaseous CH₄ upon switching from CO_2+H_2 (n(H₂):n(CO₂) = 80:1) to H₂ at 350 °C during 30 minutes.

Table S1: CO₂ methanation performance of the 63% Ni/CeO₂-CP catalyst at different temperatures (Calculated by averaging data points in 1 h on stream, 100 mg catalyst, $CO_2/H_2/Ar = 8/32/10 \text{ mL/min}$).

Temperature /°C	X _{CO2} /%	S _{CH4} /%	r(CH ₄)/mmol·g _{cat} ⁻¹ ·h ⁻¹	Carbon balance/%
150	0.3	100	0.4	99.7
200	9.4	99.4	11.5	100.3
250	77.3	99.7	86.1	105.0
300	78.5	99.6	79.8	104.8
350	77.4	99.3	72.2	105.3
400	74.1	98.3	63.3	104.2

Catalyst	Ni mass fraction (%) ^a	d _{NiO} (nm) ^b	d _{CeO2} (nm) ^b	Ni dispersion
63% Ni/CeO ₂ -CP	62.7	9.5		1.0
63% Ni/CeO ₂ -IM	63.0	22.6	7.3	0.02
15% Ni/CeO ₂ -CP	13.2		< 5.0	4.4
15% Ni/CeO ₂ -IM	15.3	12.6	10.5	0.55

 Table S2: Textural properties of the calcined catalysts.

^a determined by ICP-OES

^b determined by XRD

^c determined by CO chemisorption

 Catalyst
 $d_{Ni} (nm)^a$ $d_{CeO2} (nm)^a$ Surface Area $(m^2/g)^b$

 63% Ni/CeO₂-CP
 7.8
 < 5.0</td>
 68.6

 63% Ni/CeO₂-IM
 28.6
 7.1
 35.9

Table S3: Textural properties of the reduced 63% Ni/CeO₂-CP and 63% Ni/CeO₂-IM catalysts

^a determined by XRD

^b determined by BET