Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

	GHSV	T(°C)	P(Mpa)	CO₂ Conv (%)	CO sel	Hydrocarbon selectivity (%)		
Catalysts	(mLh ⁻¹ g _{cat} ⁻¹)					CH_4	C ₂₋₄	C ₅₊
Na–Fe ₃ O ₄ / HZSM-5 ¹	4000	320	3.0	34.0	14.0	8.0	18.0	74.0
In ₂ O ₃ / HZSM-5 ²	9000	340	3.0	19.0	48.0	1.0	27.6	71.4
FeNa(1.18) ³	2000	320	3.0	40.5	13.5	15.8	54.1	30.1
Fe-MOF- derived ⁴	3600	400	3.0	46.1	17.5	32.3	26.9	40.8
10K13Fe ₂ Co 100ZrO ₂ ⁵	7200	400	3.0	42.3	21.9	25.7	34.0	18.4
$Na-Fe_3O_4^6$	4000	320	3.0	34.0	14.0	12.0	48.0	40.0
FeK/Al ₂ O ₃ ⁷	1800	400	3.0	53.5	17.0	20.0	37.0	26.0
5Mn–Na/Fe ⁸	2040	320	3.0	39.3	9.0	8.9	31.2	59.9
K- ZnFe ₂ O ₄ 9	12000	320	2.0	47.1	8.7	14.8	39.1	46.1
FeAlOx-5 ¹⁰	4000	330	3.5	36.8	7.2	12.1	30.1	57.8
Our work	12000	320	3.0	57.75	9.06	8.13	18.13	73.8

· · · · · · · ·

		Distribution of element (%)								
Catalyst	k	<								
	а*	b*	Fe	Со	Ni	Cu	Zn			
Fe-Fe	0.805	0.805	63.5							
Co-Fe	0.696	0.816	40.4	18.4						
Ni-Fe	0.342	0.885	33.4		15.0					
Cu-Fe	0.0438	0.812	35.2			16.3				
Zn-Fe	0.0242	0.833	32.0				15.2			

Table S2. Catalys	st components	(Same K conten	t in each catalyst)
-------------------	---------------	----------------	---------------------

a: K content before K supplementation

b: K content after K supplementation

Note: The data in this table were measured by ICP

Catalyst CO ₂ conversion	<u> </u>	S _C o	FTY ^a	STY ^b	Selectivity (C-%, CO-free)			_	
	conversion		(µmol _{co2} •g-1 Fe∙s ⁻¹)	(mmol·g-1 Fe·h ⁻¹)	CH_4	C= 2- 4	C0 2- 4	C ₅₊	0/P ^c
Fe-Fe	34.67	26.53	11.94	20.29	17.59	41.09	6.66	34.68	6.17
Co-Fe	46.03	15.48	28.66	36.12	23.54	40.05	6.84	29.59	5.86
Ni-Fe	36.63	28.28	23.41	9.18	65.36	15.53	11.31	7.81	1.37
Cu-Fe	32.93	38.96	17.10	2.59	25.77	40.23	8.29	25.74	4.85
Zn-Fe	50.67	12.04	41.45	105.44	11.64	22.28	3.94	62.15	5.65
a: FTY: Iron time yield to hydrocarbons									

Table S3 Comparison of performances of the catalyst (Reaction condition: T: 320 °C, P: 3 MPa, $H_2 / CO_2 / N_2$: 18/6/6, GHSV: 12000 mL.g-1 cat. h⁻¹, TOS: 8 h, same K content).

b: STY: The space time yield (STY) from C_{5+} hydrocarbons

c: Olefin to paraffin ratio of C₂-C₄ hydrocarbons

Fig S1. N_2 adsorption-desorption isotherms of different iron-based catalysts.

Fig S2 HR-TEM of fresh samples.

Fig S3 Special SEM images and corresponding element composition mapping of different spinel-like catalysts.

Fig S4 HR-TEM of spent catalysts.

Reference

- Jian Wei1, Qingjie Ge, Ruwei Yao, Zhiyong Wen, Chuanyan Fang, Lisheng Guo, Hengyong Xu and Jian Sun.
 Directly converting CO₂ into a gasoline fuel. Nat. Commun., 2017, 8, 15174-15181.
- [2] Peng Gao, Shenggang Li, Xianni Bu, Shanshan Dang, Ziyu Liu, Hui Wang, Liangshu Zhong, Minghuang Qiu, Chengguang Yang, Jun Cai, Wei Wei and Yuhan Sun. Direct conversion of CO₂ into liquid fuels with high selectivity over a bifunctional catalyst. Nat. Chem., 2017, 9, 1019-1024.
- [3] Jian Wei, Jian Sun, Zhiyong Wen, Chuanyan Fang, Qingjie Ge and Hengyong Xu. New insights into the effect of sodium on Fe₃O₄-based nanocatalysts for CO₂ hydrogenation to light olefins. Catal. Sci. Technol., 2016, 6, 4786-4793.
- [4] Junhui Liu, Anfeng Zhang, Min Liu, Shen Hu, Fanshu Ding, Chunshan Songa, Xinwen Guo. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons. Journal of CO₂ Utilization, 2017, 21, 100–107.
- [5] Li, W.; Zhang, A.; Jiang, X.; Janik, M. J.; Qiu, J.; Liu, Z.; Guo, X.; Song, C. The anti-sintering catalysts: Fe–Co–Zr polymetallic fibers for CO₂ hydrogenation to C2=–C4=–rich hydrocarbons. J. CO₂ Util. 2018, 23, 219-225.
- [6] Shi, Z.; Yang, H.; Gao, P.; Li, X.; Zhong, L.; Wang, H.; Liu, H.; Wei, W.; Sun, Y. Direct conversion of CO₂ to longchain hydrocarbon fuels over K–promoted CoCu/TiO₂ catalysts. Catal. Today 2018, 311, 65-73.
- [7] Ding, F.; Zhang, A.; Liu, M.; Zuo, Y.; Li, K.; Guo, X.; Song, C. CO₂ hydrogenation to hydrocarbons over iron-based catalyst: effects of physicochemical properties of Al₂O₃ supports. Ind. Eng. Chem. Res., 2014, 53, 17563-17569.
- [8] Binglian Liang, Ting Sun, Junguo Ma, Hongmin Duan, Lin Li, Xiaoli Yang, Yaru Zhang, Xiong Su, Yanqiang Huang and Tao Zhang. Mn decorated Na/Fe catalysts for CO₂ hydrogenation to light olefins. Catal. Sci. Technol., 2019, 9, 456–464.
- [9] Lisheng Guo, Jie Li, Yu Cui, Rungtiwa Kosol, Yan Zeng, Guangbo Liu, Jinhu Wu, Tiansheng Zhao, Guohui Yang, Lishu Shao, Peng Zhan, Jienan Chen and Noritatsu Tsubaki. Spinel-structure catalyst catalyzing CO₂ hydrogenation to full spectrum alkenes with an ultra-high yield. Chem. Commun., 2020, 56, 9372-9375.
- [10] Muhammad Kashif Khan, Paresh Butolia, Heuntae Jo, Muhammad Irshad, Daseul Han, Kyung-Wan Nam, and Jaehoon Kim. Selective Conversion of Carbon Dioxide into Liquid Hydrocarbons and Long-Chain α-Olefins over Fe-Amorphous AlO_x Bifunctional Catalysts. ACS Catal., 2020, 10, 10325–10338.