Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Electronic Supporting Information

Ligand-assisted nickel catalysis enabling sp³ C–H alkylation of 9*H*-fluorene with alcohols

Ayanangshu Biswas[§], Amreen K. Bains[§], and Debashis Adhikari*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, SAS Nagar-140306, India: Email: adhikari@iisermohali.ac.in

Table of contents

Serial No	Content	Page
1.	General information	S2
2.	Reaction optimization	S 3
3.	Mechanistic studies	S4
	3a. Synthetic application: gram-scale synthesis	S4
	3b. Mercury drop test	S4
	3c. Alkenylation of Fluorene	S 5
	3d. Hydrogenation of 5	S 5
	3e. Deuterium incorporation studies	S6
	3f. Radical quenching experiments	S8
	3g. Plausible mechanistic pathway	S9
4.	Competitive experiment	S10
5.	Analytical data	
6.	¹ H and ¹³ C NMR spectra of synthesized compounds	
7.	References	S70

1. General information

Reagent information: All starting materials utilized in this study were procured from commercial suppliers. Potassium *tert*-butoxide, potassium hydroxide, potassium carbonate, sodium hydroxide were purchased from Avra Synthesis Pvt. Ltd., India. Primary and secondary alcohols were purchased from TCI (India) and BLD Pharma. Fluorene was purchased from BLD Pharma. All these chemicals were used without further purification. Glassware was dried overnight at 160 °C. Solvents such as acetonitrile, ethanol, and dichloromethane were used as received (Finar Chemicals). Toluene was dried by heating over sodium with benzophenone as an indicator. For thin layer chromatography (TLC), aluminum foil coated with silica and fluorescent indicator @254 nm (from Merck) was used. Column chromatography was performed using SD Fine silica gel (100-200 mesh) using a gradient of hexane and diethyl ether as mobile phase.

Analytical information: All synthesized products were isolated and characterized by ¹H and ¹³C NMR spectroscopies and High-Resolution Mass spectrometry. IR spectra were recorded on a Perkin–Elmer FTIR spectrometer as a KBr pellet. ¹H NMR and ¹³C NMR spectra were recorded on a 400 MHz Bruker Biospin Advance III FT-NMR spectrometer. NMR shifts have been reported as delta (δ) units in parts per million (ppm) and coupling constants (*J*) have been reported in hertz (Hz). Chemical shifts (δ) have been quoted to the nearest 0.01 ppm relative to the residual protons in CDCl₃ (δ 7.26 ppm). Carbon chemical shifts have been internally referenced to the deuterated solvent signals in CDCl₃ (δ 77.1 ppm). High-resolution mass spectra (HRMS) were recorded on a Waters QTOF mass spectrometer.

2. Reaction optimization

Table S1: Optimization table

	Р + <mark>1 (5</mark> Тоlu	mol%), KO ^t Bu ene, 120 °C, 24 h	(2a)
entry	catalyst Loading	base (mmol)	Yield % (2a)
1	NiCl ₂	KO ^t Bu	n.r
2	NiBr ₂	KO ^t Bu	n.r
3	1 (5 mol%)	KO ^t Bu (0.25)	28
4	1 (5 mol%)	KO ^t Bu (0.5)	41
5	1 (2.5 mol%)	KO ^t Bu (0.75)	38
6	1 (5 mol%)	КОН	n.r
7	1 (5 mol%)	K ₂ CO ₃	n.r
8	1 (5 mol%)	NaOH	n.r
10	1 (5 mol%)	KO ^t Bu (0.75)	91
11 ^a	1 (5 mol%)	KO ^t Bu (0.75)	62
12	-	KO ^t Bu (0.5)	14
13	1 (5 mol%)	-	n.r

Reaction conditions: 1 (x mol %, with respect to fluorene), fluorene (1 mmol), alcohol (2 mmol), KO^tBu (x mmol), toluene (2 mL), 120 °C, 24 h (isolated yield), ^a1:1 ratio of fluorene and alcohol was taken.

3. Mechanistic studies

3a. Synthetic application: gram-scale synthesis

In a typical reaction, a 30 mL pressure tube was charged with 1^1 (5 mol%), KO^tBu (505 mg, 4.5 mmol), benzyl alcohol (1.3 g, 12 mmol), fluorene (1 g, 6.01 mmol), dissolved in 15 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The residue was purified by column chromatography using hexane as an eluent to afford pure product (1.351 g, 87% yield).

3b. Mercury drop test

In order to establish the homogeneity of **1** in C-alkylation of fluorene reaction, we carried out mercury drop experiment.

In a typical reaction, a 15 mL pressure tube was charged with 1 (5 mol%), KO^tBu (0.75 mmol), benzyl alcohol (2 mmol), fluorene (1 mmol), dissolved in 2 mL toluene. To this reaction mixture, a drop of mercury was added. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The isolation of the product (87% yield) after 24 h confirmed the homogeneous behaviour of the catalyst.

3c. Alkenylation of fluorene

In a typical reaction, a 15 mL pressure tube was charged with KO^tBu (0.75 mmol), benzaldehyde (2 mmol), fluorene (1 mmol), dissolved in 2 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The residue was purified by column chromatography using hexane as an eluent to afford pure products. The desired products were fully characterized by ¹H, ¹³C NMR spectroscopies. Interestingly, product **5** was formed in the absence of **1**.

3d. Hydrogenation of 5

In a typical reaction, a 15 mL pressure tube was charged with 1 (5 mol%), KO^tBu (0.75 mmol), benzyl alcohol (2 mmol), **5** (1 mmol), dissolved in 2 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The residue was purified by column chromatography using hexane as an eluent to afford pure products. The desired products were fully characterized by ¹H, ¹³C NMR spectroscopies. The C-alkylated product formation was isolated in 69% yield in the presence of catalyst.

In a typical reaction, a 15 mL pressure tube was charged with 1^{H,H} (0.5 mmol), KO^tBu (0.75 mmol), **5** (0.5 mmol), dissolved in 2 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The residue was purified by column chromatography using hexane as an eluent to afford pure products. The desired products were fully characterized by ¹H, ¹³C NMR spectroscopies. The hydrogenated product was isolated in 68% yield.

3e. Deuterium incorporation studies

Figure S2. ¹H NMR spectrum (400 MHz) of deuterated 2a in CDCl₃.

	2a	D-incorporation calculation	D-incorporation calculation
Signal δ (ppm)	7.75-7.73	4.23-4.22 (1H)	3.12-3.09 (2H)
Integral value	2.00	0.73	0.94
Calculated ratio		(1-0.73) *100 = 27%	[(2-0.94)/2]*100 = 53%

Table S2: The conversion of D-labelled alcohol as monitored by ¹H NMR spectroscopy:

3f. Radical quenching experiment

In a typical reaction, a 15 mL pressure tube was charged with 1 (5 mol%), KO^tBu (0.75 mmol), alcohols (2 mmol), substituted fluorene (1 mmol), and TEMPO (x equiv) dissolved in 2 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The yield of the reaction decreased drastically with the addition of TEMPO, and complete quenching of reaction was observed when it was administered in 1 equivalent.

Table S3: Product	yield upon	varying e	quivalence of	f radical o	quencher

Entry	TEMPO equivalence	Yield (%)
1.	0.5 equiv.	14%
2.	1 equiv.	n.r.

3g. BHT-ketyl adduct detection

In a typical reaction, a 15 mL pressure tube was charged with **1** (5 mol%), KO^tBu (0.75 mmol), benzyl alcohol (2 mmol), substituted fluorene (1 mmol), and BHT (0.6 equiv) dissolved in 2 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The crude reaction mixture was filtered through a silica plug and sent for ESI-MS analysis. The ketyl-BHT adduct was identified by mass spectrometry. HRMS for [M-H]⁺ C₂₂H₂₉O₂, calcd. 325.2168, observed 325.2162.

3h. Plausible mechanistic pathway

4. Competitive experiment:

In a typical reaction, a 15 mL pressure tube was charged with **1** (5 mol%), KO'Bu (0.75 mmol), benzyl alcohols (1 mmol), 1-pentanol (1 mmol), fluorene (1 mmol), dissolved in 2 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The residue was purified by column chromatography using hexane as an eluent to afford pure products. The desired products were fully characterized by ¹H, ¹³C NMR spectroscopies. It resulted in 9-benzyl-9*H*-fluorene (**2a**, 64%) and 9-pentyl-9*H*-fluorene (**3a**, 23%), proving that aromatic alcohols are more reactive and selective than aliphatic alcohols for this transformation.

In a typical reaction, a 15 mL pressure tube was charged with 1 (5 mol%), KO'Bu (0.75 mmol), benzyl alcohols (1 mmol), α -methyl benzyl alcohol (1 mmol), fluorene (1 mmol), dissolved in 2 mL toluene. The reaction flask was purged with an inert gas for few minutes before closing the flask tightly. The reaction mixture was stirred at 120 °C for 24 h. The reaction mixture was cooled to room temperature upon completion and concentrated *in vacuo*. The residue was purified by column chromatography using hexane as an eluent to afford pure products. The desired products were fully characterized by ¹H, ¹³C NMR spectroscopies. It resulted in 9-benzyl-9*H*-fluorene (**2a**, 59%) and 9-(1-(*p*-tolyl)ethyl)-9*H*-fluorene (**3a**, 27%), proving that aromatic alcohols are more reactive and selective than aliphatic alcohols for this transformation.

Figure S3. LUMO of the unsaturated intermediate *en route* to **3m**. The LUMO largely resides on the exocyclic double bond (B3LYP/6-31G* level of theory).

5. Analytical data:

9-Benzyl-9H-fluorene (2a): White solid (yield: 233 mg, 91%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature².

¹H NMR (400 MHz, CDCl₃): δ 7.75-7.73 (d, *J* = 7.9 Hz, 2H), 7.35-7.16 (m, 11 H), 4.22 (t, *J* = 6 Hz, 1H), 3.10 (d, *J* = 7.9 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 146.9, 140.9, 139.9, 129.6, 128.3, 127.2, 126.7, 126.4, 124.9, 119.9, 48.8, 40.1 ppm.

2,7-Dichloro-9-Benzyl-9H-fluorene (2b): White solid (yield: 267 mg, 82%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.58-7.56 (d, J = 7.9 Hz, 2H), 7.34-7.29 (m, 5H), 7.19-7.17 (d, J = 7.9 Hz, 2H), 7.11 (s, 2H), 4.14 (t, J = 7.5 Hz, 1H), 3.07 (d, J = 8 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 148.3, 138.7, 138.4, 132.7, 129.5, 128.5, 127.7, 126.9, 125.4, 120.8, 48.7, 39.7 ppm. HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₀H₁₃Cl₂ 323.0394; Found 325.0385. Molecular Formula: C₂₀H₁₄Cl₂.

9-(2-Methylbenzyl)-9H-fluorene (2c): White solid (yield: 230 mg, 85%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature².

¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 7.9 Hz, 2H), 7.45 (t, *J* = 6 Hz, 2H), 7.36-7.28 (m, 6H), 7.21-7.19 (d, *J* = 7.5 Hz, 2H), 4.28 (t, *J* = 7.9 Hz, 1H), 3.13 (d, *J* = 8 Hz, 2H), 2.36 (s, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.1, 140.8, 138.4, 136.8, 130.5, 130.4, 127.2, 126.7, 124.9, 119.9, 47.7, 37.8, 19.8 ppm.

9-(4-Methylbenzyl)-9H-fluorene (2d): White solid (yield: 243 mg, 90%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.38-7.36 (t, *J* = 7.5 Hz, 2H), 7.26-7.20 (m, 4H), 7.14 (m, 4H), 4.22 (t, *J* = 7.5 Hz, 1H), 3.08 (d, *J* = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.0, 140.8, 136.8, 135.8, 129.4, 129.0, 127.1, 126.7, 124.9, 119.8, 48.8, 39.6, 21.2 ppm.

9-(4-Ethylbenzyl)-9H-fluorene (2e): White solid (yield: 229 mg, 81%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 7.9 Hz, 2H), 7.39-7.35 (t, *J* = 8.1 Hz, 2H), 7.24 -7.18 (m, 8H), 4.23(t, *J* = 7.5 Hz, 1H), 3.09 (d, *J* = 7.6 Hz, 2H), 2.72-2.66 (m, 2H), 1.29 (t, *J* = 8 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.0, 140.8, 137.3, 129.4, 127.14, 126.7, 126.4, 124.9, 119.8, 48.8, 39.77, 33.81, 24.2 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₁ 285.1643; Found 285.1672. Molecular Formula: C₂₂H₂₀.

9-(4-Isopropylbenzyl)-9H-fluorene (2f): White solid (yield: 233 mg, 78%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 7.6 Hz, 2H), 7.56-7.53 (t, J = 6 Hz, 2H), 7.44 -7.37 (m, 8H), 4.40 (t, J = 8 Hz, 1H), 3.27 (d, J = 7.9 Hz, 2H), 3.20-3.11 (m, 1H), 1.51 (d, J = 7.5 Hz, 6H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.0, 140.8, 137.3, 129.4, 127.1, 126.7, 126.4, 124.9, 119.8, 48.8, 39.7, 33.8, 24.2 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₃ 299.1800 ; Found 299.1809. Molecular Formula: C₂₃H₂₂.

9-(2-Methoxybenzyl)-9H-fluorene (2g): Yellow solid (yield: 226 mg, 79%), eluent: hexane/ ethyl acetate (98:2). The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, *J* = 7.9 Hz, 2H), 7.48-7.39 (m, 3H), 7.35-7.30 (m, 4H), 7.18 (d, *J* = 7.5 Hz, 1H), 7.05-7.01 (m, 2H), 4.5 (t, *J* = 8.1 Hz, 1H), 3.96 (s, 3H), 3.2 (d, *J* = 7.6 Hz, 2H). ¹³C{H} NMR (100MHz, CDCl₃): δ 158.0, 147.7, 140.8, 131.6, 128.6, 127.9, 126.9, 126.6, 125.1, 120.2, 119.7, 110.3, 55.3, 46.7, 35.7 ppm.

9-(4-Methoxybenzyl)-9H-fluorene (2h): Yellow solid (yield: 268 mg, 94%), eluent: hexane/ ethyl acetate (98:2). The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.3 Hz, 2H), 7.29-7.28 (m, 2H), 7.22 (m, 4H), 7.19 (d, *J* = 7.9 Hz, 2H), 6.92 (d, *J* = 9.0 Hz, 2H), 4.26 (t, *J* = 7.5 Hz, 1H), 3.88 (s, 3H), 3.13 (d, *J* = 8.0 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 158.1, 146.9, 140.9, 131.9, 130.5, 127.1, 126.7, 124.9, 119.8, 113.7, 55.2, 49.0, 39.2 ppm.

9-(4-Fluorobenzyl)-9H-fluorene (2i): White solid (yield: 252 mg, 92%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 7.6 Hz, 2H), 7.41-7.37 (m, 2H), 7.30-7.28 (m, 4H), 7.24-7.14 (m, 2H), 7.02-6.98 (m, 2H), 4.23 (t, *J* = 7.9 Hz, 1H), 3.15 (d, *J* = 8.1 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 162.9 (d, *J*_{C-F} = 243.5 Hz), 160.4, 146.6, 141.0, 135.3 (d, *J*_{C-F} = 3.0 Hz), 130.9 (d, *J*_{C-F} = 8.0 Hz), 127.3, 126.8, 124.8, 120.0, 115.2 (d, *J*_{C-F} = 20.9 Hz), 114.9, 48.8, 39.2 ppm.

9-(4-Chlorobenzyl)-9H-fluorene (2j): White solid (yield: 252 mg, 87%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.38-7.34 (t, *J* = 7.3 Hz, 2H), 7.25-7.19 (m, 6H), 7.10 (d, *J* = 8.0 Hz, 2H), 4.19 (t, *J* = 7.5 Hz, 1H), 3.10 (d, *J* = 7.0 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 146.4, 140.9, 138.1, 132.1, 130.9, 128.4, 127.3, 126.8, 124.8, 120.0, 48.5, 39.3 ppm.

9-(4-Bromobenzyl)-9H-fluorene (2k): White solid (yield: 274 mg, 82%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, *J* = 7.9 Hz, 2H), 7.42-7.36 (m, 4H), 7.27-7.22 (m, 4H), 7.06 (d, *J* = 7.3 Hz, 2H), 4.21 (t, *J* = 7.5 Hz, 1H), 3.11 (d, *J* = 7.0 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 146.4, 140.9, 138.6, 131.4, 131.3, 127.3, 126.8, 124.8, 120.0, 48.5, 39.4 ppm.

9-(3-Bromobenzyl)-9H-fluorene (2l): White solid (yield: 293 mg, 88%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.7 Hz, 2H), 7.39-7.34 (m, 4H), 7.25-7.22 (t, *J* = 7.3 Hz, 2H), 7.19-7.10 (m, 4H), 4.20 (t, *J* = 7.4 Hz, 1H), 3.08 (d, *J* = 7.0 Hz, 2H). ¹³C{H} NMR (100

MHz, CDCl₃): δ 146.4, 142.1, 140.9, 132.6, 129.8, 129.6, 128.3, 127.4, 126.8, 124.8, 122.4, 120.0, 48.5, 39.7 ppm.

9-([1,1'-biphenyl]-4-ylmethyl)-9H-fluorene (2m): Pinkish white solid (yield: 264 mg, 80%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 7.8 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.38 – 7.31 (m, 5H), 7.29 – 7.23 (m, 4H), 4.27 (t, *J* = 7.6 Hz, 1H), 3.15 (d, *J* = 7.6 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃) δ : 146.9, 141.0, 140.9, 139.2, 139.0, 130.0, 128.9, 127.2, 127.1, 127.0, 119.9, 48.7, 39.8 ppm.

9-(Naphthalen-1-ylmethyl)-9H-fluorene (2n): White solid with a greenish tinge (yield: 272 mg, 89%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 8.31 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 7.5 Hz, 2H), 7.58-7.53 (m, 2H), 7.47-7.43 (m, 1H), 7.38-7.34 (m, 2H), 7.28 (d, J = 7.0 Hz, 1H), 7.22-7.18 (m, 2H), 7.08 (d, J = 7.5 Hz, 2H), 4.42 (t, J = 8.0 Hz, 1H), 3.47 (d, J = 8.0 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.1, 140.8, 136.0, 134.1, 132.0, 129.1, 128.3, 127.5, 127.2, 126.7, 126.1, 125.7, 125.3, 125.2, 123.8, 119.9, 47.6, 38.0 ppm.

9-(4-(trifluoromethyl)benzyl)-9H-fluorene (20): White solid (yield: 263 mg, 81%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.5 Hz, 2H), 7.52 (d, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 2H), 7.29 – 7.19 (m, 6H), 4.18 (t, *J* = 7.3 Hz, 1H), 3.14 (d, *J* = 7.3 Hz, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 146.3, 143.8, 141.0, 130.0, 129.3 (q, *J* = 32.1 Hz), 128.9 (q, *J* = 32.1 Hz), 128.6 (q, *J* = 32.1 Hz), 128.3 (q, *J* = 32.1 Hz), 127.5, 126.9, 125.8, 125.3 (q, *J* = 3 Hz), 125.2 (q, *J* = 3 Hz), 125.1 (q, *J* = 3 Hz), 124.8, 123.1, 120.1, 48.4, 39.8.

9-Pentyl-9H-fluorene (3a): Yellow sticky oil (yield: 178 mg, 71%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.8 Hz, 2H), 7.50 (d, *J* = 7.9 Hz, 2H), 7.35-7.28 (m, 4H), 3.94 (t, *J* = 6.0 Hz, 1H), 2.00-1.95 (m, 2H), 1.24-1.22 (m, 6H), 0.83 (t, *J* = 6.5 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.7, 141.2, 126.9, 126.8, 124.4, 119.8, 47.5, 33.1, 32.2, 25.4, 22.5, 14.2 ppm.

9-Hexyl-9H-fluorene (3b): Yellow sticky oil (yield: 190 mg, 76%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.50 (d, *J* = 7.8 Hz, 2H), 7.35-7.28 (m, 4H), 3.95 (t, *J* = 6.0 Hz, 1H), 2.00-1.94 (m, 2H), 1.22-1.16 (m, 8H), 0.81 (t, *J* = 7.0 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.7, 141.2, 127.0, 126.9, 124.4, 119.8, 47.6, 33.2, 31.7, 29.7, 25.7, 22.7, 14.2 ppm.

9-Octyl-9H-fluorene (3c): Colorless oil (yield: 247 mg, 89%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.5 Hz, 2H), 7.50 (d, *J* = 7.9 Hz, 2H), 7.35-7.28 (m, 4H), 3.94 (t, *J* = 6.0 Hz, 1H), 1.99-1.98 (m, 2H), 1.21 (m, 12H), 0.85 (t, *J* = 7.0 Hz, 3H). ¹³C {H} NMR (100 MHz, CDCl₃): δ 147.7, 141.2, 126.9, 126.8, 124.4, 119.8, 47.6, 33.2, 32.0, 30.1, 29.5, 29.4, 25.8, 22.8, 14.2 ppm.

9-hexadecyl-9H-fluorene (3d): White solid (yield: 332 mg, 85%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.86 (d, J = 7.9 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.48-7.45 (t, J = 6.0 Hz, 2H), 7.43-7.40 (t, J = 5.9 Hz, 2H), 4.08 (t, J = 6.0 Hz, 1H), 2.14-2.10 (m, 2H), 1.41-1.35 (m, 28H), 1.05-1.02 (t, J = 5.9 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.7, 141.2, 126.9, 126.8, 124.4, 119.8, 47.6, 33.2, 32.1, 30.1, 29.9, 29.8, 29.6, 29.5, 25.8, 22.8, 14.3 ppm.

HRMS (ESI) m/z: $[M - H]^+$ Calcd for $C_{29}H_{41}$ 389.3208 ; Found 389.3221. Molecular Formula: $C_{29}H_{42}$.

2,7-dichloro-9-hexadecyl-9H-fluorene (3e): White solid (yield: 412 mg, 90%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (d, J = 8.1 Hz, 2H), 7.47 (s, 2H), 7.34-7.33 (dd, J = 4.0, J = 4.1, Hz, 2H), 3.93 (t, J = 6.0 Hz, 1H), 1.99-1.95 (m, 2H), 1.30-1.22 (m, 28H), 0.92-0.89 (t, J = 6.2 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 149.2, 138.7, 133.0, 127.4, 124.8, 120.8, 47.6, 32.8, 32.0, 29.9, 29.8, 29.7, 29.53, 29.51, 25.5, 22.8, 14.2 ppm; HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₉H₃₉Cl₂ 457.2429 ; Found 457.2432. Molecular Formula: C₂₉H₄₀Cl₂.

9-heptadecyl-9H-fluorene (3f): White solid (yield: 372 mg, 92%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 7.9 Hz, 2H), 7.59 (d, *J* = 7.5 Hz, 2H), 7.45-7.42 (t, *J* = 6.1 Hz, 2H), 7.40-7.36 (t, *J* = 5.9 Hz, 2H), 4.05 (t, *J* = 6.0 Hz, 1H), 2.10-2.06 (m, 2H), 1.39-1.30 (m, 30H), 1.01-0.98 (t, *J* = 6.1 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.7, 141.2, 126.9, 126.8, 124.4, 119.8, 47.6, 33.2, 32.1, 30.1, 29.9, 29.8, 29.6, 29.5, 25.8, 22.8, 14.3 ppm; HRMS (ESI) m/z: [M - H]⁺ Calcd for C₃₀H₄₃ 403.3365 ; Found 403.3317. Molecular Formula: C₃₀H₄₄.

2,7-dichloro-9-heptadecyl-9H-fluorene (3g): White solid (yield: 415 mg, 88%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (d, J = 8.1 Hz, 2H), 7.47 (s, 2H), 7.34-7.32 (dd, J = 4.0, J = 4.0 Hz, 2H), 3.92 (t, J = 6.1 Hz, 1H), 1.99-1.95 (m, 2H), 1.29-1.23 (m, 30H), 0.93-0.90 (t, J = 6.0 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 149.2, 138.7, 133.0, 127.4, 124.8, 120.8, 47.6, 32.8, 32.1, 29.9, 29.8, 29.7, 29.54, 29.51, 25.5, 22.8, 14.2 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₄₃Cl₂ 473.2742 ; Found 473.2767. Molecular Formula: C₃₀H₄₂Cl₂.

2,7-dichloro-9-isopentyl-9H-fluorene (3h): Yellow sticky oil (yield: 222 mg, 73%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.62-7.60 (d, J = 7.5 Hz, 2H), 7.46 (s, 2H), 7.35-7.33 (dd, J = 4.1, J = 4.0, Hz, 2H), 3.94 (t, J = 4.1 Hz, 1H), 2.02-1.96 (m, 2H), 1.53-1.44 (m, 1H), 1.02-0.97 (m, 2H), 0.85-0.83 (d, J = 4.0 Hz, 6H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 148.2, 138.8, 133.0, 127.5, 124.8, 120.9, 47.7, 34.3, 30.6, 28.4, 22.6 ppm; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₁₉Cl₂ 305.0864 ; Found 305.0875. Molecular Formula: C₁₈H₁₈Cl₂.

9-(3,5,5-trimethylhexyl)-9H-fluorene (3i): White solid (yield: 254 mg, 87%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, *J* = 7.9 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 2H), 7.44-7.40 (dd, *J* = 7.4 Hz, *J* = 7.5 Hz, 2H), 7.38-7.35 (dd, *J* = 7.0 Hz, *J* = 7.0 Hz, 2H), 4.03 (t, *J* = 4.1 Hz, 1H), 2.12-2.05 (m, 2H), 1.49-1.44 (m, 1H),1.23-1.17 (m, 2H), 1.10-1.01 (m, 2H), 0.94-0.92 (d, *J*= 7.4 Hz, 3H), 0.90 (s, 9H), ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.6, 144.5, 141.29, 141.21, 129.5, 127.9, 126.95, 126.91, 124.4, 123.8, 120.2, 119.8, 94.0, 51.1, 47.7, 35.1, 31.1, 30.6, 30.1, 30.0, 29.6, 22.7 ppm. HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₁H₂₇ 291.2113; Found 291.2139. Molecular Formula: C₂₂H₂₈.

2,7-dichloro-9-(3,5,5-trimethylhexyl)-9H-fluorene (3j): White solid (yield: 303 mg, 84%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.59-7.57 (d, J = 7.9 Hz, 2H), 7.49 (s, 2H), 7.35-7.33 (dd, J = 3.9, J = 4.0 Hz, 2H), 3.91 (t, J = 4.2 Hz, 1H), 2.03-1.98 (m, 2H), 1.46-1.40 (m, 1H), 1.18-1.09 (m, 2H), 1.03-0.99 (m, 2H), 0.91-0.89 (d, J = 7.5 Hz, 3H), 0.88(s, 9H), ¹³C{H} NMR (100 MHz, CDCl₃): δ 149.1, 138.7, 133.0, 127.4, 124.8, 120.8, 50.9, 47.6, 34.8, 31.0, 30.3, 30.1, 29.6, 22.5. HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₂H₂₅Cl₂ 359.1333; Found 359.1368. Molecular Formula: C₂₂H₂₆Cl₂.

9-(3-phenylpropyl)-9H-fluorene (3k): Colorless oil (yield: 255 mg, 90%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.66–7.62 (d, *J* = 16.1 Hz, 2H), 7.38–7.35 (d, *J* = 12.2 Hz, 2H), 7.25–7.11 (m, 6H), 7.07–7.04 (d, *J* = 11.8 Hz, 1H), 6.99–6.96 (d, *J* = 12.1 Hz, 2H), 3.90–3.86 (t, *J* = 7.9 Hz, 1H), 2.47–2.43 (m, 2H), 1.98–1.93 (m, 2H), 1.43–1.35 (m, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.4, 147.3, 142.2, 141.3, 141.2, 128.5, 128.4, 128.4, 128.3, 127.0, 127.0, 126.9, 126.9, 125.8, 124.4, 124.4, 119.9, 119.9, 47.4, 36.2, 32.6, 27.3 ppm; HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₂H₁₉ 283.1487 ; Found 283.1505. Molecular Formula: C₂₂H₂₀.

2,7-dichloro-9-(hex-5-en-1-yl)-9H-fluorene (3l): Colorless oil (yield: 295 mg, 93%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.59-7.57 (d, J = 8.1 Hz, 2H), 7.47 (s, 2H), 7.35-7.33 (dd, J = 4.1, J = 4.2, Hz, 2H), 5.82-5.72 (m, 1H), 5.01-4.94 (dd, J = 16.2 Hz, J = 12.1 Hz, 2H), 3.91 (t, J = 4.3 Hz, 1H), 2.01-1.97 (m, 4H), 1.41-1.34 (m, 2H), 1.21-1.13 (m, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 149.0, 138.7, 132.9, 127.4, 124.7, 120.8, 114.5, 47.4, 33.5, 32.5, 29.1, 24.8 ppm; HRMS (ESI) m/z: [M - H]⁺ Calcd for C₁₉H₁₇Cl₂ 315.0707 ; Found 315.0708. Molecular Formula: C₁₉H₁₈Cl₂.

9-(3,7-dimethyloct-6-en-1-yl)-9H-fluorene (3m): Colorless oil (yield: 240 mg, 79%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 4.5 Hz, 2H), 7.44-7.41 (t, *J* = 6.1 Hz, 2H), 7.39-7.36 (t, *J* = 6.2 Hz, 2H), 5.15-5.13 (t, *J* = 4.5 Hz, 1H), 4.04 (t, *J* = 6.3 Hz, 1H), 2.13-2.07 (m, 2H), 2.02-1.94 (m, 2H), 1.75 (s, 3H), 1.65 (s, 3H), 1.46-1.44 (m, 1H), 1.37-1.34 (m, 1H), 1.30-1.25 (m, 1H), 1.19-1.14 (m, 1H), 1.13-1.08 (m, 1H), 0.92-0.90 (d, *J* = 6.0 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.4, 147.4, 141.0, 130.8, 126.7, 126.6, 124.8,

124.2, 124.1, 119.6, 47.4, 36.6, 32.4, 32.2, 30.1, 25.5, 25.3, 19.3, 17.5 ppm; HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₃H₂₇ 303.2113 ; Found 303.2128. Molecular Formula: C₂₃H₂₈.

2,7-dichloro-9-(3,7-dimethyloct-6-en-1-yl)-9H-fluorene (3n): Colorless oil (yield: 306 mg, 82%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.60-7.59 (d, J = 4.5 Hz, 2H), 7.47 (s, 2H), 7.35-7.33 (dd, J = 4.1, J = 3.9, Hz, 2H), 5.09-5.06 (t, J = 6.3 Hz, 1H), 3.93 (t, J = 6.0 Hz, 1H), 2.02-1.96 (m, 2H), 1.94-1.88 (m, 2H), 1.69 (s, 3H), 1.59 (s, 3H), 1.40-1.34 (m, 1H), 1.25-1.24 (m, 1H), 1.14-1.12 (m, 1H), 1.12-1.10 (m, 1H), 0.98-0.96 (m, 1H), 0.86-0.85 (d, J = 6.0 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 148.9, 148.8, 138.5, 131.0, 127.2, 124.6, 124.5, 124.5, 120.5, 47.4, 36.5, 32.3, 32.0, 29.8, 25.5, 25.2, 19.2, 17.4 ppm. HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₃H₂₅Cl₂ 371.1333; Found 371.1365. Molecular Formula: C₂₃H₂₆Cl₂.

(E)-2,7-dichloro-9-(3,7-dimethylocta-2,6-dien-1-yl)-9H-fluorene (30): Colorless oil (yield: 282 mg, 76%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (d, *J* = 7.9 Hz, 2H), 7.50-7.48 (dd, *J* = 4.5 Hz, *J* = 4.1 Hz, 2H), 7.34-7.32 (d, *J* = 8.1, *J* = 4.6 Hz, 2H), 5.18-5.15 (t, *J* = 6.6 Hz, 1H), 5.07-5.04 (t, *J* = 6.2 Hz, 1H), 3.89 (t, *J* = 16.3 Hz, 1H), 2.57 (t, *J* = 6.5 Hz, 2H), 2.07-1.97 (m, 4H), 1.73-1.69 (d, *J* = 16.1 Hz, 3H), 1.65-1.61 (d, *J* = 16.3 Hz, 3H), 1.56-1.54 (d, *J* = 16.1 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 149.1, 138.6, 138.2, 132.9, 131.7, 127.5, 125.1, 124.8, 124.2, 121.6, 120.8, 47.6, 39.9, 32.2, 31.9, 31.7, 26.7, 25.8, 23.5,17.8, 17.7, 16.4 ppm; HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₃H₂₃Cl₂ 369.1177; Found 369.1174. Molecular Formula: C₂₃H₂₄Cl₂.

9-(1-(p-Tolyl)ethyl)-9H-fluorene (4a): White solid (yield: 213 mg, 75%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.82-7.78 (m, 2H), 7.59-7.57 (d, *J* = 7.2 Hz, 1H), 7.47-7.41 (m, 3H), 7.40-7.32 (m, 2H), 7.30-7.23 (m, 3H), 7.21-7.19 (d, *J* = 7.5 Hz, 1H), 4.37 (d, *J* = 4.5 Hz, 1H), 3.77-3.72 (m, 1H), 2.47 (s, 3H), 0.99 (d, *J* = 7.2 Hz, 3H). ¹³C{H} NMR (100MHz, CDCl₃): δ 146.4, 144.4, 141.5, 141.3, 141.1, 135.4, 128.7, 128.6, 127.7, 126.8, 126.7, 126.5, 125.9, 125.4, 124.0, 119.4, 119.3, 54.0, 41.2, 20.8, 13.7 ppm.

9-(1-(4-methoxyphenyl)ethyl)-9H-fluorene (4b): Yellow oil (yield: 268 mg, 77%), eluent: hexane/ ethyl acetate (98:2). The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.74-7.70 (m, 2H), 7.51-7.50 (d, J = 4.5 Hz, 1H), 7.40-7.38 (d, J = 8.7 Hz,, 1H), 7.36-7.30 (m, 2H), 7.23-7.21 (d, J = 8.7 Hz, 2H), 7.15-7.11 (m, 1H), 6.90-6.86 (m, 3H), 4.27 (d, J = 4.5 Hz, 1H), 3.84 (s, 3H), 3.68-3.61 (m, 1H), 0.93-0.91 (d, J = 6.9 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 158.0, 146.5, 144.7, 141.8, 141.4, 136.7, 128.9, 127.1, 127.0, 126.8, 124.3, 119.7, 119.6, 113.5, 55.2, 54.3, 41.1, 14.2 ppm.

9-(1-(3,4-dimethoxyphenyl)ethyl)-9H-fluorene (4c): Yellow solid (yield: 201 mg, 61%), eluent: hexane/ ethyl acetate (98:2).

¹H NMR (400 MHz, CDCl₃): δ 7.71–7.66 (dd, J = 8.7 Hz, J = 8.2 Hz, 2H), 7.52 (d, J = 7.2 Hz, 1H), 7.36–7.32 (m, J = 8.7 Hz, 1H), 7.30-7.26 (m, 2H), 7.13 (t, J = 8.7 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 6.78-6.76 (m, 2H), 6.70 (s, 1H), 4.25 (d, J = 7.5 Hz, 1H), 3.87 (s, 3H), 3.77 (s, 3H), 3.64-3.61 (m, 1H), 1.03-1.01 (d, J = 6.9 Hz, 3H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 148.5, 147.4, 146.4, 144.9, 141.8, 141.6, 136.8, 127.19, 127.12, 126.8, 126.3, 125.7, 124.5, 120.0, 119.8, 119.7, 111.3, 110.7, 55.9, 54.4, 41.8, 15.2 ppm. HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₃H₂₁O₂ 329.1541; Found 329.1585. Molecular Formula: C₂₃H₂₂O₂.

9-(1-(naphthalen-1-yl)ethyl)-9H-fluorene (4d): Brown solid (yield: 205 mg, 64%), eluent: hexane/ ethyl acetate (99:1).

¹H NMR (400 MHz, CDCl₃): δ 8.56–8.53 (d, J = 12 Hz, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.89 (d, J = 7.2 Hz, 1H), 7.84–7.79 (m, 2H), 7.76–7.75 (d, J = 7.2 Hz, 2H), 7.69–7.65 (m, 1H), 7.59–7.55 (m, 2H), 7.44–7.40 (m, 3H), 7.32 (t, J = 8.2 Hz, 1H), 7.09–7.05 (t, J = 7.2 Hz, 1H), 6.53 (d, J = 7.9 Hz, 1H), 4.58–4.52 (m, 1H), 4.49–4.48 (d, J = 4.5 Hz, 1H), 0.84 (d, J = 7.2 Hz, 3H) ¹³C {H} NMR (100 MHz, CDCl₃): δ 147.1, 144.2, 142.1, 141.5, 140.3, 134.2, 131.6, 129.5,127.5,127.3, 127.2, 127.0,126.3, 126.2, 125.6, 125.3, 124.8, 123.7, 123.0, 119.9, 119.7, 52.2, 37.2, 12.6 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₅H₂₁ 321.1643; Found 321.1618. Molecular Formula: C₂₅H₂₀.

9-(1-(4-chlorophenyl)ethyl)-9H-fluorene (4e): White solid (yield: 249 mg, 82%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.67–7.63 (m, 2H), 7.45–7.43 (d, J = 7.5 Hz, 1H), 7.34–7.20 (m, 6H), 7.12–7.07 (m, 2H), 6.85–6.83 (d, J = 7.5 Hz, 1H), 4.18 (d, J = 4.5 Hz, 1H), 3.61–3.55 (m, 1H), 0.93 (d, J = 7.0 Hz, 3H). ¹³C {H} NMR (100 MHz, CDCl₃): δ 146.1, 144.4, 142.9, 141.8, 141.5, 132.0, 129.5, 128.2, 127.3, 127.2, 126.9, 126.4, 125.4, 124.3, 119.9, 119.8, 54.0, 41.6, 14.6 ppm. HRMS (ESI) m/z: [M - H]⁺ Calcd for C₂₁H₁₆Cl 303.0941; Found 303.0960. Molecular Formula: C₂₁H₁₇Cl.

9-cyclopentyl-9H-fluorene (4f): Colorless oil (yield: 189 mg, 81%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.74-7.72 (d, *J* = 8.0 Hz, 2H), 7.56-7.55 (d, *J* = 7.5 Hz, 2H), 7.34 (m, 2H), 7.28 (m, 2H), 4.00 (d, *J* = 5.5 Hz, 1H), 2.38-2.36 (m, 1H), 1.77-1.75 (m, 2H), 1.57-1.55 (m, 2H), 1.49-1.45 (m, 2H), 1.37-1.35 (m, 2H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 147.2, 141.4, 126.9, 126.6, 125.2, 119.7, 51.3, 44.4, 30.1, 25.3 ppm.

9-cyclohexyl-9H-fluorene (4g): Colorless oil (yield: 186 mg, 75%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.72-7,70 (d, J = 7.5 Hz, 2H), 7.52-7.51 (d, J = 6.9 Hz, 2H), 7.34-7.33 (m, 2H), 7.31-7.28 (m, 2H), 3.86 (m, 1H), 2.17-2.09 (m, 1H), 1.65-1.57 (m, 3H), 1.45-1.42 (d, J = 11.1 Hz, 2H), 1.24-1.04 (m, 5H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 146.5, 141.6, 126.8, 126.6, 124.9, 119.6, 53.6, 43.1, 29.7, 26.9, 26.5 ppm.

9-cycloheptyl-9H-fluorene (4h): Colorless oil (yield: 220 mg, 84%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.72-7.71 (d, J = 7.2 Hz, 2H), 7.55-7.53 (d, J = 6.8 Hz, 2H), 7.35-7.31 (m, 2H), 7.28-7.24 (m, 2H), 3.94-3.93 (m, 1H), 2.36-2.30 (m, 1H), 1.62-1.25 (m, 12H). ¹³C{H} NMR (100 MHz, CDCl₃): δ 146.7, 141.8, 126.9, 126.7, 124.8, 119.6, 54.9, 54.8, 44.1, 31.8, 27.8, 27.7 ppm. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₃ 263.1800; Found 263.1799. Molecular Formula: C₂₀H₂₂.

2,7-dichloro-9-cycloheptyl-9H-fluorene(4i): White solid (yield: 261 mg, 79%), eluent: hexane.

¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (d, *J* = 7.9 Hz, 2H), 7.52 (s, 2H), 7.34-7.32 (dd, *J* = 6.5 Hz, 2H), 3.91-3.90 (m, 1H), 2.32-2.26 (m, 1H), 1.67-1.64 (m, 2H), 1.59-1.57 (m, 2H), 1.51-1.41 (m, 4H), 1.39-1.31 (m, 2H), 1.30-1.25 (m, 2H); ¹³C{H} NMR (100 MHz, CDCl₃): δ 148.2,

139.3, 132.8, 127.4, 125.1, 120.6, 54.9, 43.9, 31.6, 27.7, 27.6, 27.5 ppm. HRMS (ESI) m/z: $[M - H]^+$ Calcd for $C_{20}H_{19}Cl_2$ 329.0864; Found 329.0848. Molecular Formula: $C_{20}H_{20}Cl_2$.

9-(1,2,3,4-tetrahydronaphthalen-1-yl)-9H-fluorene (4j): Colorless oil (yield: 183 mg, 62%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature⁴.

¹H NMR (400 MHz, CDCl₃): δ 7.89-7.87 (m, 2H),7.84-7.82 (m, 1H), 7.73-7.71 (d, J = 7.5 Hz, 1H), 7.52-7.32 (m, 5H), 7.24 (d, J = 6.9 Hz, 1H), 7.11-7.07 (m, 1H), 6.49-6.47 (d, J = 7.9 Hz, 1H), 4.79-4.78 (d, J = 3.9 Hz, 1H), 4.02-3.98 (m, 1H), 2.73-2.68 (m, 1H), 2.61-2.53 (m, 1H), 1.51-1.47 (m, 3H), 0.84-0.78 (m, 1H); ¹³C{H} NMR (100 MHz, CDCl₃): δ 146.5, 145.3, 141.9, 141.5, 139.3, 138.8, 129.4, 128.2, 127.07, 127.04, 126.9, 126.6, 126.1, 125.9, 125.3, 123.7, 119.8, 119.5, 52.5, 40.6, 30.3, 23.3, 21.9 ppm.

9-benzylidene-9H-fluorene (5): White solid (yield: 218 mg, 78%), eluent: hexane. The NMR spectroscopic data is in agreement with the literature³.

¹H NMR (400 MHz, CDCl₃): δ 7.85-7.83 (d, *J* = 7.9 Hz, 1H), 7.79-7.75 (m, 3H), 7.66-7.64 (d, *J* = 7.5 Hz, 3H), 7.54-7.50 (t, *J* = 6 Hz, 2H), 7.47-7.35 (m, 4H), δ 7.15-7.11 (dt, *J* = 7.5 Hz, *J* = 7.6 Hz, 1H); ¹³C{H} NMR (100 MHz, CDCl₃): δ 141.3, 139.5, 139.2, 136.9, 136.6, 136.5, 129.3, 128.7, 128.6, 128.3, 128.1, 127.3, 127.0, 126.7, 124.4, 120.3, 119.8, 119.6 ppm.

6. ¹H and ¹³C NMR spectra of synthesized compounds:

Figure S5. ¹³C NMR spectrum (100 MHz) of 2a in CDCl₃

Figure S6. ¹H NMR spectrum (400 MHz) of 2b in CDCl₃

Figure S7. ¹³C NMR spectrum (100 MHz) of 2b in CDCl₃

Figure S8. ¹H NMR spectrum (400 MHz) of 2c in CDCl₃

Figure S9. ¹³C NMR spectrum (100 MHz) of 2c in CDCl₃

Figure S10. ¹H NMR spectrum (400 MHz) of 2d in CDCl₃

Figure S11. ¹³C NMR spectrum (100 MHz) of 2d in CDCl₃

Figure S12. ¹H NMR spectrum (400 MHz) of 2e in CDCl₃

Figure S13. ¹³C NMR spectrum (100 MHz) of 2e in CDCl₃

Figure S15. ¹³C NMR spectrum (100 MHz) of 2f in CDCl₃

7,788 7,788 7,749 7,748 7,749 7,748 7,749

Figure S16. ¹H NMR spectrum (400 MHz) of 2g in CDCl₃

Figure S17. ¹³C NMR spectrum (100 MHz) of 2g in CDCl₃

Figure S18. ¹H NMR spectrum (400 MHz) of 2h in CDCl₃

Figure S19. ¹³C NMR spectrum (100 MHz) of 2h in CDCl₃

Figure S20. ¹H NMR spectrum (400 MHz) of 2i in CDCl₃

Figure S21. ¹³C NMR spectrum (100 MHz) of 2i in CDCl₃

Figure S22. ¹H NMR spectrum (400 MHz) of 2j in CDCl₃

Figure S23. ¹³C NMR spectrum (100 MHz) of 2j in CDCl₃

Figure S26. ¹H NMR spectrum (400 MHz) of 2l in CDCl₃

Figure S27. ¹³C NMR spectrum (100 MHz) of 2l in CDCl₃

Figure S28. ¹H NMR spectrum (400 MHz) of 2m in CDCl₃

Figure S29. ¹³C NMR spectrum (100 MHz) of 2m in CDCl₃

Figure S30. ¹H NMR spectrum (400 MHz) of 2n in CDCl₃

Figure S31. ¹³C NMR spectrum (100 MHz) of 2n in CDCl₃

Figure S33. ¹³C NMR spectrum (100 MHz) of 20 in CDCl₃

Figure S34. ¹H NMR spectrum (400 MHz) of 3a in CDCl₃

Figure S35. ¹³C NMR spectrum (100 MHz) of 3a in CDCl₃

Figure S36. ¹H NMR spectrum (400 MHz) of 3b in CDCl₃

Figure S37. ¹³C NMR spectrum (100 MHz) of 3b in CDCl₃

Figure S38. ¹H NMR spectrum (400 MHz) of 3c in CDCl₃

Figure S39. ¹³C NMR spectrum (100 MHz) of 3c in CDCl₃

Figure S40. ¹H NMR spectrum (400 MHz) of 3d in CDCl₃

Figure S41. ¹³C NMR spectrum (100 MHz) of 3d in CDCl₃

Figure S42. ¹H NMR spectrum (400 MHz) of 3e in CDCl₃

Figure S43. ¹³C NMR spectrum (100 MHz) of 3e in CDCl₃

 4.05

Figure S44. ¹H NMR spectrum (400 MHz) of 3f in CDCl₃

Figure S45. ¹³C NMR spectrum (100 MHz) of 3f in CDCl₃

Figure S46. ¹H NMR spectrum (400 MHz) of 3g in CDCl₃

Figure S47. ¹³C NMR spectrum (100 MHz) of 3g in CDCl₃

Figure S49. ¹³C NMR spectrum (100 MHz) of 3h in CDCl₃

Figure S51. ¹³C NMR spectrum (100 MHz) of 3i in CDCl₃

Figure S54. ¹H NMR spectrum (400 MHz) of 3k in CDCl₃

Figure S55. ¹³C NMR spectrum (100 MHz) of 3k in CDCl₃

Figure S56. ¹H NMR spectrum (400 MHz) of 3l in CDCl₃

Figure S57. ¹³C NMR spectrum (100 MHz) of 3l in CDCl₃

Figure S58. ¹H NMR spectrum (400 MHz) of 3m in CDCl₃

Figure S59. ¹³C NMR spectrum (100 MHz) of 3m in CDCl₃

Figure S60. ¹H NMR spectrum (400 MHz) of 3n in CDCl₃

Figure S61. ¹³C NMR spectrum (100 MHz) of 3n in CDCl₃

Figure S63. ¹³C NMR spectrum (100 MHz) of 30 in CDCl₃

7,78 7,77 7,78 7,74

Figure S64. ¹H NMR spectrum (400 MHz) of 4a in CDCl₃

Figure S65. ¹³C NMR spectrum (100 MHz) of 4a in CDCl₃

Figure S66. ¹H NMR spectrum (400 MHz) of 4b in CDCl₃

Figure S67. ¹³C NMR spectrum (100 MHz) of 4b in CDCl₃

<103 101 101

Figure S68. ¹H NMR spectrum (400 MHz) of 4c in CDCl₃

Figure S69. ¹³C NMR spectrum (100 MHz) of 4c in CDCl₃

C0.85

ò

Figure S71. ¹³C NMR spectrum (100 MHz) of 4d in CDCl₃

Figure S73. ¹³C NMR spectrum (100 MHz) of 4e in CDCl₃

200

Figure S75. ¹³C NMR spectrum (100 MHz) of 4f in CDCl₃

Figure S77. ¹³C NMR spectrum (100 MHz) of 4g in CDCl₃

Figure S78. ¹H NMR spectrum (400 MHz) of 4h in CDCl₃

Figure S79. ¹³C NMR spectrum (100 MHz) of 4h in CDCl₃

Figure S80. ¹H NMR spectrum (400 MHz) of 4i in CDCl₃

Figure S81. ¹³C NMR spectrum (100 MHz) of 4i in CDCl₃

Figure S83. ¹³C NMR spectrum (100 MHz) of 4j in CDCl₃

Figure S84. ¹H NMR spectrum (400 MHz) of 5 in CDCl₃

Figure S85. ¹³C NMR spectrum (100 MHz) of 5 in CDCl₃

7. References:

1) A. K. Bains, A. Kundu, S. Yadav, D. Adhikari, ACS Catal. 2019, 9, 9051-9059

2) M. A. Shaikh, S. G. Agalave, A. S. Ubale, B. Gnanaprakasam, J. Org. Chem. 2020, 85, 2277–2290

3) A. Mondal, R. Sharma, D. Pal, D. Srimani, Chem. Commun., 2021, 57, 10363-10366

4) J. Chen, Y. Li, S. Li, J. Liu, F. Zheng, Z. Zhang, Q. Xu, Green Chem., 2017, 19, 623-628