Electronic supplementary information (ESI)

Regulating interaction of Ru nanoparticles and Eu₂O₃ support achieves enhanced activity for ammonia synthesis

Jiemin Wang,^{ab} Lin Liu,^{*bc} Ji Feng,^{bc} Xilun Zhang,^{bc} Xiaohua Ju,^b and Ping Chen^{*bc} ^aZhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China ^bDalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China ^cUniversity of Chinese Academy of Sciences, Beijing 100049, China E-mail: liulin@dicp.ac.cn, pchen@dicp.ac.cn

Fig. S1 TEM images in different scale (a-b), particle size distribution (c) and Energy Dispersive X-Ray (EDX) spectrum (d) of $RuO_2 NPs$.

Fig. S2 XRD pattern of RuO_2 NPs.

Fig. S3 XRD patterns of 3% Ru/Eu_2O_3 -p and 3% Ru/Eu_2O_3 -p catalyst sample obtained after stability test.

Fig. S4 Arrhenius plots of 3% Ru/Eu₂O₃–i (\bullet) and 3% Ru/Eu₂O₃–p (\triangledown).

Fig. S5 Arrhenius plots of 1% Ru/Eu₂O₃-p (\blacksquare), 2% Ru/Eu₂O₃-p (\bullet), 3% Ru/Eu₂O₃-p (\blacktriangledown) and 5% Ru/Eu₂O₃-p (\blacklozenge).

Sample	Ru content ^a	Ru content ^b	Surface area (m ²	Mean particle	Dispersion ^c
	(wt%)	(wt%)	g ⁻¹)	size ^c (nm)	(%)
Eu_2O_3	_	_	49.3	_	-
3% Ru/Eu ₂ O ₃ -m	0.89	2.10	33.2	~4.5	~26.8
3% Ru/Eu ₂ O ₃ i	4.76	2.06	47.3	~3.5	~32.9
3% Ru/Eu ₂ O ₃ -p	0.69	3.08	52.2	~3.5	~32.9

Table S1 Properties of Eu₂O₃, 3% Ru/Eu₂O₃-m, 3% Ru/Eu₂O₃-i and 3% Ru/Eu₂O₃-p catalysts.

^a Determined by XPS.

^b Determined by ICP-OES.

^c Mean particle size and dispersion of Ru NPs were determined by TEM study using the equation of Borodziński and Bonarowska.