Supplementary document

Role of Iron Contaminants in the Pathway of Ultra-Stable Y Zeolite Degradation

Qianqian Liu^a, Bo Peng^a, Qiaoqiao Zhou^b, Aiguo Zheng^a, Xiuzhi Gao^a, Yu Qi^b, Shuai Yuan, Yuxia Zhu^a, Lian Zhang^b, Haitao Song^{a*} and Zhijian Da^{a*}

^a Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, China

^b Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, Victoria 3800, Australia

Fig. S1 N_2 adsorption-desorption isotherms and pore size distribution curves for

parent and iron contaminated USY zeolite after calcination

(a)-(c) N₂ adsorption-desorption isotherms for USY, USY_{2.5}, USY₅ calcinated at 700 °C,

800 °C, 900 °C, 1000 °C; (d)-(e) pore size distribution curves for USY, USY_{2.5}, USY₅

The N_2 adsorption-desorption isotherms and pore size distribution curves for parentand iron contaminated USY zeolite after calcination are given in Fig. s1. The

hysteresis loop in the adsorption–desorption isotherms is ascribed to capillary condensation effects and reveals the presence of mesopores. At higher relative pressures ($P/P_o > 0.8$) the adsorption and desorption branches of the isotherm are nearly parallel, suggesting that the mesopores are mainly open and channel-like. However, the sudden closure of the hysteresis loop at $P/P_o = 0.45$ points to cavitation resulting from the presence of blocked mesopores that can only be accessed either through micropores ("closed" mesopores) or through openings with a diameter of less than 4 nm (constricted mesopores).¹

Fig. S2 Hydrothermal stability of parent and iron contaminated USY zeolite

Table S1 Ethylcyclohexane	cracking over	parent and iron	contaminated	USY zeolite
---------------------------	---------------	-----------------	--------------	-------------

	USY	USY _{2.5}	USY ₅	USY-	USY _{2.5} -	USY ₅ -
				900	900	900
Reaction temperature/°C				500		
Sv⁻¹/g·h·mol⁻¹						
Conversion/%	28.73	28.45	28.52	18.54	10.51	6.62
Hydrogen	0.06	0.23	0.35	0.04	0.12	0.19
Methane	0.69	0.52	0.41	0.61	0.15	0.12
Ethane	1.21	1.18	1.16	1.11	0.33	0.27

before and after thermal treatment

Ethylene	2.26	2.52	2.86	2.10	0.44	0.39
Dry gas	4.23	4.45	4.78	3.86	1.03	0.97
Propane	1.75	1.53	1.44	0.72	0.55	0.22
Propylene	5.50	5.48	5.33	3.67	1.50	0.88
n-Butane	1.79	1.72	1.66	0.70	0.65	0.22
Isobutane	1.63	1.68	1.66	0.55	0.55	0.14
1-Butene	1.47	1.49	1.51	0.95	0.47	0.25
Isobutylene	1.92	1.93	1.92	1.03	0.65	0.30
c-2-Butene	1.22	1.21	1.23	0.76	0.43	0.22
t-2-Butene	1.59	1.41	1.52	0.99	0.57	0.29
Butadiene	0.02	0.02	0.02	0.02	0.00	0.00
LPG	16.90	16.47	16.29	9.38	5.37	2.54
Liquid yield	7.48	7.36	7.25	5.25	4.03	3.08
Coke	0.13	0.17	0.20	0.05	0.08	0.03

Fig. S3 XRD patterns of USY after calcination at 1100 °C for 2h

Fig. S4 Si²⁸-NMR of parent and iron contaminated USY zeolite after calcinated at different temperature

Fig. S5 Al²⁷-NMR of parent and iron contaminated USY zeolite after calcination at 800

°C for different time

(a) USY-0; (b) USY-2.5%Fe; (c) USY-5%Fe

Fig. S6 Al²⁷-NMR and fitting results of parent USY zeolite after calcination at 900 °C

for different time

(a) 0.5h; (b) 1h; (c) 1.5h; (d) 2h

Fig. S7 Al²⁷-NMR and fitting results of USY-2.5%Fe after calcination at 900 °C for

different time

Fig. S8 Al²⁷-NMR and fitting results of USY-5%Fe after calcination at 900 °C for

different time (a) 0.5h; (b) 1h; (c) 1.5h; (d) 2h

Fig. S9 The elemental distribution of USY_5 calcinated at 1000 °C by STEM

Table S2 Main parameters used in EXAFS fitting for USY_{2.5} calcinated at different

temperatures				
	R-range	K-range		
USY _{2.5} -800	1-3.6	0.5-6.2		
USY _{2.5} -900	1-3.1	0.5-7		
USY _{2.5} -1000	1-3.1	0.5-7		

¹ J. Zecevic, C. J. Gommes, H. Friedrich, P. E. de Jong, K. P. de Jong, *Angew. Chem. Int. Ed.*, 2012, 51, 4213-4217.