Supporting Information

Selective photocatalytic oxidation of cyclohexene coupled with hydrogen evolution from water splitting over Ni/NiO/CdS and mechanism insight

Ying Zhang^{a,b}, Ziran Liu^a, Changyan Guo^{a,*}, Cheng Guo^a, Yi Lu^{b,*}, Jide Wang^{a,*}

^a Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, School of chemical engineering and technology, Xinjiang University, Urumqi, 830046, China

^b Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Urumqi, 830011, China

*Corresponding author.

E-mail: gcyslw@xju.edu.cn (Changyan Guo).

E-mail: <u>luyi_xjzjy@163.com</u> (Yi Lu).

E-mail: <u>awangjd@sina.cn</u> (Jide Wang)

Content

Figure S1. EDX spectrum of the synthesized Ni/NiO/CdS compositie1	
Figure S2. Time-dependent H_2 evolution (a) in different ratios (v/v) of water and MeCN as reaction solvent (MeCN/H ₂ O ^a : 1/9, MeCN/H ₂ O ^b : 3/7, MeCN/H ₂ O ^c : 5/5); (b) Radical capture experiment for photocatalytic oxidation of cyclohexene; (c) photocatalytic	
oxidation cyclonexene, cyclonex-2-en-1-ol and cyclonexane-1,2-diol	•
Figure S3. (a) Band gap energies of Ni/NiO; (b) UPS spectrum of Ni/NiO	2
Figure S4. UPS spectrum of CdS2	,
Figure S5. Photocatalytic recycling performance2)
Figure S6. The reactor system and setup	;
Figure S7. (a) Gas chromatogram of photocatalytic oxidation of cyclohexene products distribution under Ar; (b) gas chromatogram of photocatalytic oxidation of cyclohexene products distribution under O ₂ ; (c) liquid chromatogram of photocatalytic oxidation of cyclohexene products distribution under Ar; (d) gas chromatogram of photocatalytic oxidation of cyclohex-2-en-1-ol products distribution under Ar	3
Table S1. The content of each element in the composite catalyst by EDS results4	ŀ
Table S2. Under different solvent conditions, the cyclohexene conversion rate4	ŀ
Table S3. Radical capture reaction cyclohexene conversion rate and product yield under argon conditions4	ł
Table S4 Comparison with the reported results for oxidation of cyclohexene coupled5	;
Table S5 Cyclohexene conversion rate and product yield under argon atmosphere and oxygen atmosphere.	5
Table S6. The content of Ni and Cd in the catalysts. 5	;
Table S7. Cyclohexene conversion rate and product yield in different time	5
Table S8. Photocatalytic reaction products and yield	5
Table S9. GC Method validation of linearity in five sample matrices.	5
Table S10. Radical capture reaction cyclohexene conversion rate and product yield under oxygen conditions. 7	,
Scheme S1. Under oxygen atmosphere, proposed potential mechanism of the photocatalytic oxidation cyclohexene by Ni/NiO/CdS	;

Figure S1. EDX spectrum of the synthesized Ni/NiO/CdS compositie.

Figure S2. Time-dependent H_2 evolution (a) in different ratios (v/v) of water and MeCN as reaction solvent (MeCN/H₂O^a: 1/9, MeCN/H₂O^b: 3/7, MeCN/H₂O^c: 5/5); (b) Radical capture experiment for photocatalytic oxidation of cyclohexene; (c) photocatalytic oxidation cyclohexene, cyclohex-2-en-1-ol and cyclohexane-1,2-diol.

Figure S3. (a) Band gap energies of Ni/NiO; (b) UPS spectrum of Ni/NiO.

Figure S5. Photocatalytic recycling performance.

The reactor system and setup

Legend: 1. Cold recirculating cooler (Cole-parmer, 12101-36, USA); 2. Condensate pipe (water outlet);

3. Condensate pipe (water inlet); 4. Magnetic stirrer (ChangZhou yuexin, 78-1); 5. Photoreaction flask;

6. Xenon lamp (Perfectlight, PLS-SXE 300)

Figure S6. The reactor system and setup.

Figure S7. (a) Gas chromatogram of photocatalytic oxidation of cyclohexene products distribution under Ar; (b) gas chromatogram of photocatalytic oxidation of cyclohexene products distribution under O_2 ; (c) liquid chromatogram of photocatalytic oxidation of cyclohexene products distribution under Ar; (d) gas chromatogram of photocatalytic oxidation of cyclohex-2-en-1-ol products distribution under Ar.

Elem	Mass%	М	Atom%
С	32.37	12.011	0.60
Ο	17.14	15.999	0.24
S	9.66	32.059	0.07
Ni	7.97	58.693	0.03
Cd	32.86	112.41	0.06

Table S1. The content of each element in the composite catalyst by EDS results.

 Table S2. Under different solvent conditions, the cyclohexene conversion rate.

Solvent	Solvent ratio (MeCN/H ₂ O, v/v)	Conv. (%)	H ₂ rate (µmol)
H ₂ O	10	3.4	13.9
MeCN	10	0	0
MeCN/H ₂ O ^{a*}	1/9	14.8	16.0
MeCN/H ₂ O ^b	3/7	10.9	11.3
MeCN/H ₂ O ^c	5/5	5.3	6.2

*Different ratios (v/v) of water and MeCN as reaction solvent: MeCN/H₂O^a: 1/9, MeCN/H₂O^b: 3/7, MeCN/H₂O^c: 5/5.

under argon conditions.								
Compound								
	Conv. (%)	cyclohex- 2-en-1-ol	cyclohex-2- en-1-one	cyclohexa none	cyclohexane -1,2-diol	H ₂ rate (μmol)		
Blank	14.8	2.6	8.2	1.7	2.1	16.0		
Triethanolamine	1.7	0.5	0.7	0.3	0.1	6.8		

Table S3. Radical capture reaction cyclohexene conversion rate and product yield under argon conditions.

0.9

0.2

0.3

7.9

Isopropanol

2.1

0.6

Catalysts	Light source	Solvent	Oxidation conditions	Tem (°C)	Tim e (h)	Conv (%)	Products *	Ref.
UiO-66	none	MeCN	H_2O_2	50	1	31	C, D	1
Fe-Co-g- C ₃ N ₄	none	H ₂ O	O ₂ (4 MP)	90	5	27.6	A, B, C, D	2
СоМо	420-500 nm	4-ethyltoluene	O ₂ (1 atm)	50	12	69.8	A, B, C, D	3
Fe-TiO ₂	400 W/D	H ₂ O	Air (1 bar)	37	3	/	A, B, C	4
TiO ₂	λ>280 nm	MeCN	O ₂ (1 atm)	40	3	27	A, B, C	5
Degussa P25 TO ₂	λ>340 nm	MeCN	O ₂	RT.	8	/	С	6
Ni/NiO/Cd S	λ>420 nm	MeCN/H ₂ O=1/ 9	none	25	6	14.8	A, B, D, E	This work
UiO-66	none	MeCN	H_2O_2	50	1	31	C, D	

Table S4 Comparison with the reported results for oxidation of cyclohexene coupled.

Products*: in scheme 1 and scheme 2

Table S5 Cyclohexene conversion rate and product yield under argon atmosphere and oxygen atmosphere.

Oxidation	Solvent	Conv.		Yield (%)				Rea
conditions	(v/v)	(%)	А	В	Е	D	(µmol)	ctio
Argon	MeCN/H ₂ O=1/9	14.8	2.6	8.2	1.7	2.1	16.0	n
Argon*	MeCN/H ₂ O=1/9	0	0	0	0	0	trace	con
Oxygen	MeCN/H ₂ O=1/9	11.9	0.4	11.3	trace	0.2	trace	ditio
								ns:

cyclohexene (10 mM), Photocatalyst (10 mg), Solvent (10 mL), visible light irradiation (λ >420 nm, 6 h). Argon*: no reactants (cyclohexene).

Type of catalyst	Ni constant (%) ^a	Cd constant (%) ^b
Ni/NiO/CdS_0.5	1.26	5.33
Ni/NiO/CdS_1	2.34	4.75
Ni/NiO/CdS_2	3.94	4.25
Ni/NiO/CdS_4	5.33	3.31
Ni/NiO/CdS_8	5.61	2.40

Table S6. The content of Ni and Cd in the catalysts.

	Conv. (%)					
Time (h)		cyclohex- 2-en-1-ol	cyclohex-2- en-1-one	cyclohexa none	cyclohexane- 1,2-diol	H ₂ rate (μmol)
0	0	0	0	0	0	0
1	4.7	1.6	1.7	0	1.2	5.0
2	8.3	2.8	3.9	0	1.5	8.2
3	10.5	3.1	5.4	0	1.8	10.7
4	12.4	3.5	6.9	0	1.9	12.8
5	13.2	2.7	7.6	0.8	2.0	14.2
6	14.8	2.6	8.2	1.7	2.1	16.0

a: Percentage of Ni element content, b: Percentage of Cd element content

 Table S7. Cyclohexene conversion rate and product yield in different time.

Table S8. Photocatalytic reaction products and yield.

	Conv		U moto			
Compound	. (%)	cyclohex-2- en-1-ol	cyclohex-2- en-1-one	cyclohex anone	cyclohexane -1,2-diol	H_2 rate (µmol)
cyclohexene	14.8	2.6	8.2	1.7	2.1	16.0
cyclohex-2-en-1- ol	41.2	/	24.5	16.3	trace	34.5
cyclohexane-1,2- diol	0	trace	trace	trace	/	trace

Table S9. GC Method validation of linearity in five sample matrices.

Analytes	Linear range (µg·mL ⁻¹)	Regression equation	Correlation coefficient (r ²)
cyclohexene	10 -1000	Y = 1158.35X + 3989.38	0.9992
cyclohex-2-en-1-ol	10 -200	Y = 899.66X - 2661.63	0.9926

cyclohex-2-en-1-one	10 -200	Y = 842.22X + 5615.86	0.9905
cyclohexanone	10 -200	Y = 658.21X + 3241.70	0.9954

Table S10. Radical capture reaction cyclohexene conversion rate and product yield under oxygen conditions.

			Selectivity (%)				
Ent ry	Compound	Conv . (%)	cyclohex- 2-en-1-ol	cyclohex-2- en-1-one	cyclohex anone	cyclohexane -1,2-diol	H ₂ rate (μmol)
(a)	Blank	11.9	0.4	11.3	trace	0.2	trace
(b)	Benzoquinone	0.5	trace	0.5	trace	trace	trace
(c)	Isopropanol	0.2	trace	0.2	trace	trace	trace

Scheme S1. Under oxygen atmosphere, proposed potential mechanism of the photocatalytic oxidation cyclohexene by Ni/NiO/CdS.

References

- 1. N. V. Maksimchuk, J. S. Lee, M. V. Solovyeva, K. H. Cho, A. N. Shmakov, Y. A. Chesalov, J.-S. Chang and O. A. Kholdeeva, *ACS Catal.*, 2019, **9**, 9699-9704.
- 2. D. Yang, T. Jiang, T. Wu, P. Zhang, H. Han and B. Han, *Catal. Sci. Technol.*, 2016, **6**, 193-200.
- 3. X. Shi, Z. Shi, G. Niu, C. Si, Q. Han and J. Zhang, *Catal. Lett.*, 2019, **149**, 3048-3057.
- 4. A. Henríquez, H. D. Mansilla, A. Martínez-de la Cruz, L. Cornejo-Ponce, E. Schott and D. Contreras, *Catalysts*, 2020, **10**, 1448-1462.

- 5. Y. Shiraishi, M. Morishita and T. Hirai, *Chem. Commun.*, 2005, 5977-5979.
- 6. S. Ouidri, C. Guillard, V. Caps and H. Khalaf, *Appl. Clay Sci.*, 2010, **48**, 431-437.