Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information for

Chemoselective Nitrilation of Dimethyl Adipate with Ammonia over Carbon Encapsulated WO_x Catalysts under Continuous Flow Conditions

Guang-Rong Ding,^{a,b} Yao-Feng Wang,^a* Guo-Yi Duan,^a Tao Guo,^{a,c} Xiao-Feng Xu^a,

Chun-Shan Li,^{a,b} Bao-Hua Xu^{a,b}*

^a Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green

Process and Engineering, Institute of Process Engineering, Chinese Academy of

Sciences, Beijing, 100190, China

^b College of Chemistry and Chemical Engineering, School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China

^c College of Marine and Environmental Sciences, Tianjin university of science & technology, Tianjin, 300457, China

Corresponding authors:

Bao-Hua Xu, E-mail: <u>bhxu@ipe.ac.cn</u>,

Yao-Feng Wang, E-mail: yaofeng.wang@ipe.ac.cn

Table of contents

1. Experimental	S3-S4
2. Supplementary figures and tables	S4-S12

1. Experimental

Continuous-Flow Setup

The catalysts evaluation experiments in dimethyl adipate nitrification have been performed on a homemade continuous-flow fixed bed stainless steel microreactor (Scheme S1), provided by controlled flow rates of reactants and connected vertical downstream with condensers using ethanol as absorbent in order to collect heavy products including adiponitrile, methyl 5-cyanopentanoate, dimethyl adipate and other by-products together. The microreactor consists of three main connected capacities: Upstream side is the evaporation chamber where liquid dimethyl adipate is fed into the heated volume by a high-precision syringe pump and blown downwards by a controlled nitrogen flow (mass flow meter, range 2-10 mL·min⁻ ¹), and the heating provided to the evaporation chamber and the flow parameters ensure full evaporation of the ester (>260 °C). Midstream core is a stainless steel tubular reactor (inner diameter = 6 mm, length = 320 mm), with the constant temperature zone contained catalytic bed of 1.50 ml volume, the tubular reactor is disposed inside a vertical furnace, ensuring a control over the catalytic bed's temperature (stability within 1 °C at 375 °C), the temperature was controlled by a K-type thermocouple placed in the middle of the catalyst bed. Ammonia flow is controlled (mass flow meter, range 2-10 mL·min⁻¹) and premixed with vaporized dimethyl adipate, delivered downstream at the top of the catalytic bed, ensuring that the reactants are thoroughly mixed before contacting the catalyst bed. The evaporation chamber, furnace and other pipeline are wholly put inside an oven maintaining temperature at 220 °C for preventing possible dimethyl adipate or products condensation. Downstream is condensers where the products at the reactor outlet dissolved in ethanol, which was collected with around a 1h interval and then mixed with biphenyl used as internal standard and analyzed by GC with FID detector and a DB-FFAP capillary column (Agilent, 30 m×0.32 mm×1.00 µm). The time of steam for is 8 h.

Scheme S1. Continuous-flow fixed bed setup for dimethyl adipate nitrification.

2. Supplementary figures and tables

Table	S1 .	Textural	pro	perties.
	~ - •		P- V	

Entry	Samples	$\frac{S_{BET}^{a}}{(m^{2}g^{-1})}$	S _{Exter} ^b (m ² g ⁻¹)	S _{micro} b (m ² g ⁻¹)	V _{micro} b (cm ³ g ⁻¹)	V _p (cm ^{g-1})	D _p ^d (nm)	ρ _w (atoms·nm ⁻²)
1	WO _x @C/C-400-0.25	58	51	7	0.003	0.14	9.63	17.79
2	WO _x @C/C-500-0.25	121	58	63	0.027	0.18	5.88	8.84
3	WO _x @C/C-600-0.25	320	116	204	0.085	0.31	3.91	3.43
4	WO _x @C/C-700-0.25	366	91	275	0.112	0.30	3.26	3.07
5	WO _x @C/C-800-0.25	358	86	272	0.111	0.27	3.05	3.44
6	activated carbon	813	396	416	0.208	0.65	3.2	0
7	SiW ₁₂ @PIL/C	51	47	3	0.001	-	-	-
8	WO _x @C/C-600-0.25-C1	209	81	128	0.053	0.16	3.5	5.40
9	WO _x @C/C-600-0.25-C2	282	96	185	0.077	0.27	3.80	4.01

^a BET surface area.

^b Microporous and external surface area, microporous volume estimated by the DFT method.

^c Total pore volume.

^d Average pore size.

$$\rho_{W} = \frac{n_W N_A}{m_{cat} S_{BET}}$$

^e The W apparent density is calculated by the following equation:

Figure S1. (a) the corresponding pore size distribution curves of $WO_x@C/C-n-0.25$ (n=400, 500, 600, 700, 800); (b) N_2 sorption isotherms and the (c) corresponding pore size distribution curves of $SiW_{12}@PIL/C$, $WO_x@C/C-600-0.25$ and activated carbon.

Figure S2. XRD spectra for a) tungstosilicic acid calcined at 400°C, 500°C, 600 °C under N₂ atmosphere; b) WO_x@C/C-500-0.25.

Figure S3. Characteristic D band and G band in Raman spectrum of WO_x@C/C-n-0.25 (n=400, 600, 800)

Figure S4 (a) XPS survey (b) Fitted N 1s XPS spectra of SiW₁₂@PIL/C and WO_x@C/C-400-0.25 (c) N 1s XPS spectra of $WO_x@C/C-n-0.25$ (n= 400, 500, 600, 700, 800)

Figure S5 Room temperature EPR spectra of $WO_x@C/C-n-0.25$ (n = 400, 500, 600, 700, and 800)

Table S2. Absolute Spins reports of EPR.

Samples Spins (×10 ¹⁷)		The test weight of sample (mg)
WO _x @C/C-400-0.25	1.430	10
WO _x @C/C-500-0.25	1.328	10
WO _x @C/C-600-0.25	1.215	10
WO _x @C/C-700-0.25	0.930	10
WO _x @C/C-800-0.25	0	10

Table S3. Cyanation of Dimethyl Adipate over WO_x@C/C-n-0.25 (n = 400, 500, 600, 700, 800) ^a

Sample	Conversion	$\begin{array}{c} STY_{ADN} \\ mmol/(g_{cat} \cdot h) \end{array}$	STY _{MCP} mmol/(g _{cat} · h)	TON mol _{adn} /(mol _{wox} ·h)	TON mol _{MCP} /(mol _{WOx} ·h)	TON total	Selectivity
SiW ₁₂ @PIL/C	33.55%	0.22	0.09	0.17	0.07	0.23	34.88%
WO _x @C/C-400-0.25	38.59%	0.46	0.28	0.27	0.16	0.43	51.60%
WO _x @C/C-500-0.25	38.73%	0.47	0.45	0.26	0.26	0.52	67.54%
WO _x @C/C-600-0.25	50.63%	0.93	0.94	0.51	0.52	1.03	92.10%
WO _x @C/C-700-0.25	50.54%	0.78	0.83	0.42	0.45	0.86	86.67%
WO _x @C/C-800-0.25	49.96%	0.68	0.91	0.33	0.44	0.77	77.61%

^aReaction conditions: 375 °C, feed dimethyl adipate (DMA) 0.005 mL/min, NH₃ 10 mL/min, WHSV 0.64 h⁻¹, TOS 8 h.

Figure S6. ¹H NMR spectrum of the solid mixture

Figure S7. XRD spectra for WO_x@C/C-600-m (m = 0.1, 0.2, 0.25, 0.5, 1.0), showed similar main composition of WO_{2.83}

Figure S8. SEM images for a) WO_x@C/C-600-0.1, b) WO_x@C/C-600-0.2, c) WO_x@C/C-600-0.25, d) WO_x@C/C-600-0.5, e) WO_x@C/C-600-1.0, showed the better physical dispersion of WO_x at the carbon support with increased dosage of active carbon.

Sample	Conversion	STY _{ADN} mmol/(g _{cat} · h)	STY _{MCP} mmol/(g _{cat} · h)	TON mol _{ADN} /(mol _W _{Ox} ·h)	TON mol _{MCP} /(mol _W _{Ox} ·h)	TON total	Selectivity			
WO _x @C/C-600-0.1	16.41%	0.12	0.38	0.05	0.15	0.20	61.34%			
WO _x @C/C-600-0.2	44.46%	0.64	0.94	0.31	0.46	0.76	87.72%			
WO _x @C/C-600-0.25	50.63%	0.93	0.94	0.51	0.52	1.03	92.10%			
WO _x @C/C-600-0.5	66.24%	0.86	0.54	0.65	0.41	1.07	82.82%			
WO _x @C/C-600-1.0	82.73%	0.67	0.15	0.83	0.19	1.02	70.97%			
R	Reaction conditions: 375 °C, feed dimethyl adipate (DMA) 0.005 mL/min, NH ₃ 10mL/min, TOS 8 h.									

Table S4. Cyanation of Dimethyl Adipate over WO_x@C/C-600-m catalysts with different dosage of activated carbon.

 Table S5. Effect of WHSV of Dimethyl Adipate over WOx@C/C-600-0.5

Sample	WHSV (h ⁻¹)	Conversion	STY _{ADN} mmol/(g _{cat} · h)	STY _{MCP} mmol/(g _{cat} · h)	TON mol _{ADN} /(mol _W _{Ox} ·h)	TON Mol _{MCP} /(m ol _{WOx} ·h)	TON total	Selectivity
	0.23	83.92%	0.41	0.23	0.32	0.18	0.50	77.35%
WO _x @C/C- 600-0.5	0.44	66.24%	0.84	0.53	0.65	0.41	1.07	82.82%
	0.89	50.66%	1.00	1.42	0.77	1.09	1.86	87.35%
	1.77	35.07%	1.08	2.09	0.83	1.61	2.43	80.52%
	Read	tion condition	s: 375 °C, Feed o	dimethyl adipate (D	MA) 0.005 mL/mi	n, NH ₃ 10mL/m	in, TOS 8	h.

Sample	Reaction temperature (°C)	Conversion	STY _{ADN} mmol/(g _{cat} · h)	STY _{MCP} mmol/(g _{cat} · h)	TON mol _{ADN} /(mol _{WOx} ·h)	TON mol _{MCP} /(mol _{WOx} · h)	TON total	Selectivity
WO-@C/C	350	49.71%	0.65	0.93	0.35	0.50	0.84	80.24%
-600-0.25	375	50.63%	0.93	0.94	0.51	0.52	1.03	92.10%
	385	57.91%	0.89	0.77	0.48	0.41	0.88	83.20%
WO @C/C	350	61.99%	0.60	0.50	0.47	0.39	0.86	67.70%
-600-0.5	375	66.24%	0.86	0.54	0.65	0.41	1.07	82.82%
	385	72.23%	1.23	0.73	0.95	0.57	1.52	78.23%
	350	82.04%	0.59	0.23	0.73	0.29	1.02	60.66%
-600-1.0	375	82.73%	0.67	0.15	0.83	0.19	1.02	70.97%
	385	81.55%	0.78	0.16	0.98	0.20	1.18	65.50%
	Reaction	n conditions: H	Feed dimethyl ad	lipate (DMA) 0.005	5 mL/min, NH ₃ 10	mL/min, TOS	58h.	

Table S6. Effect of Reaction Temperature for Cyanation of Dimethyl Adipate over WO_x@C/C-600-m (m=0.25, 0.5, 1.0)

Figure S9. The catalyst durability of a) $WO_x@C/C-600-0.5$; reaction temperature: 350 °C, 375 °C, 385 °C, WHSV 0.44 h⁻¹, b) $WO_x@C/C-600$ -m (m = 0.1, 0.2, 0.25, 0.5, 1.0), 375 °C, common reaction conditions: feed dimethyl adipate (DMA) 0.005 mL/min, NH₃ 10 mL/min.

Figure S10. (a) N₂ sorption isotherms and the (b) corresponding pore size distribution curves of WO_x@C/C-600-0.25 and WO_x@C/C-600-0.25-C1, WO_x@C/C-600-0.25-C2.

Figure S11. XRD spectra for (a) $WO_x@C/C-600-0.25$ and $WO_x@C/C-600-0.25-C1$, (b) $WO_x@C/C-600-0.25-C2$. TEM images of (c) $WO_x@C/C-600-0.25-C1$ and (d) WOx@C/C-600-0.25-C2, which showed that WO_x is coated with thick carbon layer (~100 nm).

Figure S12. SEM images for a) for WO_x@C/C-600-0.25, nanowires structure of WO_{2.83}. b) for WO_x@C/C-600-0.25-C1, mixed WO_{2.83} nanowires and WO_{2.9} blocky structures and c) WO_x@C/C-600-0.25-C2, agglomerate blocky structure of WO₃.

Figure S13. EDS images for a) nanowires structure of WO_x, b) and c) the distribution of W and O in WO_x@C/C-600-0.25; d) agglomerate blocky structure of WO_x, e) and f) the distribution of W and O in WO_x@C/C-600-0.25-C2.

Table S7. Cyanation of Dimethyl Adipate over WO_x@C/C-600-0.25, WO_x@C/C-600-0.25-C1 and WO_x@C/C-600-0.25-C2. ^a

Sample	Conversion	$\begin{array}{c} \mathbf{STY}_{\mathbf{ADN} \text{ mmol}/(\mathbf{g}_{cat}}\\ \cdot \mathbf{h}) \end{array}$	$STY_{MCP} \\ mmol/(g_{cat} \cdot h)$	TON mol _{ADN} /(mol _{WOX} ·h)	TON mol _{MCP} /(mol _{WOx} -h)	TON total	Selectivity
WO _x @C/C-600-0.25	50.63%	0.93	0.94	0.51	0.52	1.03	92.10%
WO _x @C/C-600-0.25-C1	49.26%	0.63	0.9	0.34	0.48	0.82	84.31%
WO _x @C/C-600-0.25-C2	29.99%	0.29	0.31	0.16	0.16	0.32	50.95%
				•		•	•

^aReaction conditions: 375 °C, feed dimethyl adipate (DMA) 0.005 mL/min, NH₃ 10 mL/min, WHSV 0.64 h⁻¹, TOS 8 h.

Figure S14. XRD spectra for (a) WO_x@C/C-600-0.25, WO_x@C/C-600-0.25-A1/A2

Table S8. Cyanation of Dimethyl Adipate over WO_x@C/C-600-0.25, WO_x@C/C-600-0.25-A1 and WO_x@C/C-600-0.25-A2. ^a

Sample	Conversion	$\begin{array}{c} STY_{ADN} \text{ mmol/}(g_{cat} \\ \cdot \mathbf{h}) \end{array}$	$STY_{MCP} \\ mmol/(g_{cat} \cdot h)$	TON mol _{ADN} /(mol _{WOX} ·h)	TON mol _{MCP} /(mol _{WOx} ·h)	TON total	Selectivity
WO _x @C/C-600-0.25	50.63%	0.93	0.94	0.51	0.52	1.03	92.10%
WO _x @C/C-600-0.25-A1	55.65%	1.3	1.13	0.62	0.54	1.17	95.82%
WO _x @C/C-600-0.25-A2	65.33%	1.6	1.35	0.68	0.57	1.26	95.26%
	•	•		•		•	•

^aReaction conditions: 375 °C, feed dimethyl adipate (DMA) 0.005 mL/min, NH₃ 10 mL/min, WHSV 0.64 h⁻¹, TOS 8 h.

Figure S15. ¹H NMR spectrum for [VBIM]Br