Supporting information

N-coordinated Ir single atoms anchored on carbon octahedrons for catalytic oxidation of formaldehyde under ambient conditions

Shiqi Peng, ab Yongfang Rao, c Yu Huang, *bd Tan Li, e Rong Li, bd Jun-ji Cao abd and

Shuncheng Lee $^{\rm f}$

^a School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an

710049, China

^b Key Laboratory of Aerosol Chemistry & Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences (CAS), Xi'an 710061, China

^c Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an
710049, China

^dCAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China

^e School of Environment and Energy, South China University of Technology, Guangzhou

51006, China

^f Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China Text S1.

Materials. All materials were used as received without further purification. zirconium chloride (ZrCl₄), 2–amino terephthalic acid (H₂BDC-NH₂), hydrofluoric acid solution (HF, 40%), N, N-dimethylformamide (DMF), formalin solution (38%) and glacial acetic acid were purchased from Aladdin Company. Chloroiridic acid (H₂IrCl₆·*x*H₂O, Ir: 35 wt% in HCl) was purchased from Shanghai Macklin Biochemical Co., Ltd. Deionized water was obtained with resistivity exceeding 18 M Ω ·cm.

Fig. S1 XRD patterns of Ir/UiO-66-NH₂.

Fig. S2 SEM images of Ir/UiO-66-NH2. Scale bars, 1 μm (A), 200 nm (B).

Fig. S3 EDX elemental line-scan profiles of Ir_1 -N-C.

Fig. S4 High-resolution of Ir 4f XPS spectra of 6.7Ir₁-N-C.

Fig. S5 (A) HCHO removal as a function of time over $1.6Ir_1$ -N-C, $1.6Ir_1$ -N-C/ZrO₂ and N-C/ZrO₂ within 120 min. (B) The corresponding HCHO conversion as a function of time. Reaction conditions: 20 °C, 20% O₂, and N₂ balance, RH = 30%, WHSV = 60,000 mL h⁻¹ g_{cat}⁻¹.

Fig. S6 HCHO conversion as a function of time over $1.6Ir_1$ -N-C under WHSV of 300,000, 600,000 and 720,000 mL h⁻¹ g_{cat}⁻¹.

Fig. S7 (A) ESR spectra of N-C in an air flow within 120 min. (B) ESR spectra of Ir_1 -N-C samples in a N₂ flow, in an air flow and in a HCHO + air flow, respectively.

Fig. S8 DMPO spin-trapping ESR spectra of $\bullet O_2^-$ in methanol solution.

Fig. S9 (A) HCHO removal, (B) HCHO conversion as a function of time over silica wool.

Fig. S10 In situ DRIFTS of silica wool. Reaction conditions: 50 ppm of HCHO, 30 mL min⁻¹ of the total flow, 20% O_2 and N_2 as balance gas, T = 20 °C.

Table S1 Structural information and fitting parameters from Ir L3-edge EXAFS spectra of Ir₁-

N-C.

Catalyst	shell	CN ^a	R(Å) ^b	σ ^{2 c}	$\Delta E_0^{\ d}$	R factor
Ir ₁ -N-C	Ir-N	4.3±0.4	2.05±0.01	0.0021	12.6±1.7	0.0171
. CN: according to member of the bond distances a -2. Datus Wellow factors of AF + the inner						

a CN: coordination numbers; b R: bond distance; c σ^2 : Debye-Waller factors; d ΔE_0 : the inner potential correction. R factor: goodness of fit. S_0^2 was set to 0.84, according to the experimental EXAFS fit of IrO₂ reference by fixing CN as the known crystallographic value.

Samples	Ir loading ^a (wt.%)	Т (°С)	Reaction condition	Specific rate (mmol g _{Ir} ⁻¹ h ⁻¹)	Note		
	1.6	20	100 ppm HCHO, 20%	401.9	This		
Ir ₁ -IN-C	1.0	20	O_2, N_2 balance, RH = 30%	401.8	work		
			180 ppm HCHO, 20%				
Ir/Al ₂ O ₃	1.5	20	O ₂ , He balance,	79.2	Ref. ¹		
			RH = 50%				
			180 ppm HCHO, 20%				
Ir/Al ₂ O ₃	1.8	20	O ₂ , He balance,	43.5	Ref. ¹		
			RH = 50%				
			120 ppm HCHO, 20%				
Na-Ir/TiO ₂	0.95	25	O ₂ , He balance,	159.0	Ref. ²		
			RH = 50%				
a Determined by ICP-OES; b Calculated at 20 °C at which HCHO conversion reached 20%.							

Table S2 Catalytic activity of Ir_1 -N-C and reported supported Ir catalysts.

~ •	Adsorption configuratio		
Species	Top view	Side view	$\Delta E_{ad} (eV)$
O ₂		♦-60-00 -60-60-80-80-	-0.01
		, as as as as	-0.43
нсно		چ <mark>9</mark> 40- <u>60-60-60-60-</u> 60-	0.34
		€0	0.38
		• • • • • • • • • • • • • • • • • • •	0.25
		¢ 40 40 40 40 40 40	0.35
		€-02-02-02-02-02-00-00-	0.37
	-2000	مي 4 30 30 40 40 30 - 30 - 30 - 30 - 30 - 3	0.35

Table S3 The possible adsorption configurations of O_2 and HCHO on Ir₁-N-C, respectively.

Notes and references

- X. Sun, J. Lin, Y. Wang, L. Li, X. Pan, Y. Su and X. Wang, *Appl. Catal.*, *B*, 2020, 268, 118741.
- 2. Y. Li, X. Chen, C. Wang, C. Zhang, H. He, ACS Catal. 2018, 8, 11377.