Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Development of an alkaline Electro-Fenton process based on the

synthesis of H₂O₂ in bicarbonate electrolyte

Xiaotian Liu,^a Yuran Yang,^a Feng Duan,^a Jinyu Wen,^a Xijun Wei,^a Yujie Huang,^a Bi Jia,^b Gaili Ke,

^{a*} Huichao He ^{b*} and Yong Zhou ^c

^a State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.Address here.

^b Institute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongging University of Science and Technology. Chongging 401331, China.

^c Ecomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 211102, China.

Corresponding Authors' Email:

kgl.xzy@163.com (Gaili Ke)

hehuichao@cqust.edu.cn (Huichao He)

Material preparation. The In₂O₃ films were prepared on fluorine-doped tin oxide (FTO) glass substrate (1 cm×2 cm, sheet resistance < 15 Ω) by a drop-casting method that similar to a previous report.¹ Specifically, In(NO₃)₃·xH₂O (Aladdin, 99.9%) was firstly dissolved in ethanol to form 0.1 M In³⁺ precursor solution. Then, 80 µL of In³⁺ precursor solution was dropped on the conductive surface of FTO glass, and successively heated in air at 150 °C for 60 min and 300 °C for 60 min to form In₂O₃ film.

The MnO₂ powders were prepared by a hydrothermal method as reported in our previous work.² Firstly, 0.845 g MnSO₄·H₂O (Aladdin, 99%) and 1.14 g (NH₄)₂S₂O₈ (Aladdin, >98%) were dissolved in 80 mL of deionized water. Then, this precursor solution was transferred into a Teflon-lined autoclave (150 mL) for hydrothermal reaction at 140 °C. After 12 h of reaction, the products were collected through centrifugation and washed with deionized water. Finally, the resultant products were dried at 80 °C for 5 h, and further annealed in air at 300 °C for 3 h.

Material characterizations. The morphology of In₂O₃ films and MnO₂ powders was observed by scanning electron microscope (SEM, Carl Zeiss GeminiSEM 300). The diffraction (XRD) patterns of samples were recorded on an X-ray diffractometer (XRD-6000, Shimadzu). In addition, the chemical state of the In₂O₃ films and MnO₂ powders were examined with X-ray photoelectron spectroscopy (XPS, ESCALAB 250, Thermo Scientific). The content of dissolved In and Mn after reaction in electrolyte was analyzed by inductively coupled plasma spectrometer (ICP, Thermo ICAP6300 Duo).

The electrochemical production of H₂O₂ and related detection. The electrochemical production of H₂O₂ was performed on a CHI 760E workstation with a standard threeelectrode cell. The resultant In_2O_3 film with an geometric area of 1.0 cm×1.0 cm was used as the working electrode, a graphite rod ($\phi = 5$ mm) was acted as the counter electrode, and the reference electrode was a saturated calomel electrode (SCE, Shanghai INESA Scientific Instrument). 2.0 M KHCO₃ aqueous solution was used as the electrolyte. For all electrochemical testing, the electrolyte volume was fixed at 25 mL. The concentration of electrochemically produced H₂O₂ was doubly detected by a TiOSO₄ UV-vis spectrometer method and commercial H₂O₂ strips testing. Firstly, 0.5 mL of electrolyte was collected from cell, and then 1.0 mL of 3.0 M H₂SO₄ was added into the electrolyte to adjust its pH to acidity. After that, 1.0 mL of 0.1 M TiOSO₄ was added and reacted with the collected electrolyte for 10 min. Finally, the concentration of H₂O₂ was determined by UV-vis spectrometer (Beijing Persee TU-1901, China) at a wavelength of 402 nm. The commercial H_2O_2 strips were purchased from HangZhou Lohand Biological Co., LTD.

The Faraday efficiency (FE) of H_2O_2 production by the In_2O_3 film anode at different potentials was calculated on the basis of the actual production of H_2O_2 and theoretical production of H_2O_2 . The theoretical production of H_2O_2 was calculated using the recorded charge assuming it all originate from the 2-electrons oxidation of water into H_2O_2 . The actual production of H_2O_2 was determined by TiOSO₄ UV-vis spectrometer method. The equation is as follows.

$$FE = \frac{amount \ of \ generated \ H_2O_2}{theoretical \ amount \ of \ H_2O_2} \times 100\%$$
(1)

The measured potentials (E_{SCE}) vs. SCE reference electrode were calibrated into the potentials vs. reversible hydrogen electrode (E_{RHE}) using Nernst equation as follow.

$$E_{\rm RHE} = E^{\theta}_{\rm SCE} + E_{\rm SCE} + 0.0592 \, pH \tag{2}$$

Where $E_{SCE}^{\theta} = 0.241$ V vs. RHE, at 298 K, and pH is the pH value of electrolyte.

The electrochemically active surface area (ECSA) of the In₂O₃ film in 1.0 M KHCO₃, Na₂HPO₄ and Na₂SO₄ electrolyte was determined based on its double capacitance (C_{dl}). in a non-Faradaic potential range of 0.65 to 0.75 V vs. RHE, C_{dl} was determined from the cyclic voltammograms (CV) at a series of scan rates of 20, 40, 60, 80, 100 mV/s (**Fig. S3a, S3b** and **S3c**). The anodic-cathodic current density (ΔI) at 0.7 V vs. RHE and the scan rate extracted from the CV curves were fitted into a linear relationship (**Fig. S3h**), and the value of C_{dl} was half of the slope of ΔI vs scan rate curve. The ECSA of the In₂O₃ film was calculated using the following equation:

$$ECSA = C_{dl}/C_s \tag{3}$$

where C_s represents the specific capacitance of In₂O₃ film electrode in theory. Because the surface of In₂O₃ film electrode is not as smooth as expected, the C_s value of In₂O₃ electrodes was replaced by the C_s value of FTO substrate in 1.0 M KHCO₃, Na₂HPO₄ and Na₂SO₄ electrolyte (**Fig. S3g**) to calculate the ECSA.

The degradation of organics. P-nitrophenol (PNP), Bisphenol A (BPA) and Rhodamine B (RhB) were selected as model organic pollutants to demonstrate the effectiveness of the as-proposed alkaline Electro-Fenton process, because PNP, BPA and RhB can exist in the HCO₃⁻-containing aqueous solution stably. The degradation of PNP, BPA and RhB was conducted at constant potential model in a standard threeelectrode cell, respectively. The exposed geometric area of In_2O_3 film working electrode was 1.0 cm² (1.0 cm×1.0 cm), the counter and reference electrode were graphite rod and SCE electrode, respectively. For all of degradation reactions, the electrolyte volume was fixed at 25 mL, the rotated speed was 200 rpm and the MnO₂ content was 0.6 g/L.

The scale-up degradation experiment was performed in a two-electrodes cell linked with a DC power. An In_2O_3 film with an area of 4.0×5.0 cm² was used as the anode, a graphite rod (5 mm diameter× 80 mm length) was acted as the cathode. The electrolyte was 150 mL of 2.0 M KHCO₃/10 ppm RhB with 0.6 g/L MnO₂ powders, and the DC voltage was fixed at 5.0 V.

The concentration changes of PNP and RhB were detected by UV-vis spectrometer method at a wavelength of 401 nm and 554 nm, respectively. The concentration change of BPA was detected by high-performance liquid chromatography (HPLC, Shimadzu, LC-16). The mobile phase was methanol and water (70:30 v/v), and the flow rate was 1 mL/min, and the detection wavelength was 230 nm. The TOC removal of electrolyte was checked by TOC analyzer (Shimadzu, TOC-L CPH). In addition, the active radicals in KHCO₃/H₂O₂ and KHCO₃/H₂O₂/MnO₂ solution were detected by a Bruker EMX Plus-10/12 EPR spectrometer, respectively. The ¹³C NMR signals of HCO₃⁻ and HCO₄⁻ in KHCO₃ electrolyte were detected by NMR instrument (Bruker BioSpin, 600M HZ) at room temperature.

Fig. S1 The Nyquist plots of the In_2O_3 film electrode in 1.0 M KHCO₃, Na_2HPO_4 or Na_2SO_4 electrolyte at 3.0 V vs. RHE.

Fig. S2 The Tafel curves of the In_2O_3 film electrode in 1.0 M KHCO₃, Na_2HPO_4 or Na_2SO_4 electrolyte, taking the oxidation of water into oxygen (1.23 V *vs.* RHE) as the reference.

Fig. S3 CV curves of In₂O₃ (a-c) and FTO (d-f) in 1.0 M KHCO₃, Na₂HPO₄ or Na₂SO₄. (g, h) The $\Delta I vs. v$ plots used for the determination of C_s , C_{dl} and ECSA at 0.7 V vs. RHE.

Fig. S4 The 13 C NMR signals of HCO₃⁻ and HCO₄⁻ in the KHCO₃ electrolyte after 25 min of reaction at 3.0 V *vs.* RHE.

Fig. S5 (a) The LSV curves and (b) the production amount of H_2O_2 for the In_2O_3 film electrode in KHCO₃ electrolyte with different concentrations.

Fig. S6 The Faraday efficiency of H₂O₂ production in the cell with 2.0 M KHCO₃ electrolyte and

In₂O₃ film anode.

Fig. S7 The contrastive LSV for the same In_2O_3 film electrode before and after 12 h of reaction in 2.0 M KHCO₃ electrolyte at 3.0 V *vs*. RHE.

Fig. S8 (a) O 1s and (b) In 3d XPS spectra of the In_2O_3 film electrode before and after 12 h of reaction in 2.0 M KHCO₃ electrolyte at 3.0 V vs. RHE.

Fig. S9 The SEM images of MnO_2 powders (a, b) before and (c, d) after 12 h of reaction in KHCO₃ electrolyte.

Fig. S10 (a) XRD patterns, (b) O 1s and (c) Mn 2p XPS spectra of MnO_2 powders before and after 12 h of reaction in KHCO₃ electrolyte.

Fig. S11 The degradation curves of 10 ppm BPA in 2.0 M KHCO₃ electrolyte with 0.6 g/L MnO_2 and without MnO_2 powders.

Fig. S12 The pseudo-first-order kinetic curve of the degradation of (a) PNP, (b) RhB and (c) BPA in the In_2O_3 film electrode-based cell with MnO_2 powders-containing KHCO₃ electrolyte.

Fig. S13 The degradation of (a) 10 ppm PNP, (b) 10 ppm RhB and (c) 10 ppm BPA in 2.0 M KHCO₃ aqueous solution (voltage-free) with and without 0.6 g/L MnO₂ powders.

Fig. S14 The TOC retention rate of (a) 10 ppm RhB and (b) 10 ppm BPA *vs.* reaction time in 2.0 M KHCO₃ electrolyte with and without 0.6 g/L MnO₂ powders at 3.0 V *vs.* RHE.

Fig. S15 (a) The scale-up two-electrode cell for the degradation of 10 ppm RhB, (b) the photograph of In_2O_3 film.

Fig. S16 (a) The degradation rate and (b) photograph of 150 mL of 10 ppm RhB through the twoelectrode cell with a 5.0 V of DC voltage.

Table S1 The ICP detected content of dissolved In and Mn ions in the KHCO3 electrolyte after 12h of reaction at 3.0 V vs. RHE.

Condition	In ion/ppm	Mn ion/ppm
Before reaction	0	0
After reaction	0.081	0.362

Reference.

- 1 T. Waitz, T. Wagner, T. Sauerwald, C. D. Kohl and M. Tiemann, *Adv. Funct. Mater*, 2009, **19**, 653-6
- 2 Y. Wu, L. Yang, B. Wu, J. Li, B. Liu, G. Ke, F. Dong, Y. Zhou and H. He, *Catal. Lett*, 2020, **151**, 901-908.