Supporting information

Guerbet-Type β-alkylation of Secondary Alcohols Catalyzed by Chromium Chloride and its Corresponding NNN Pincer Complex

Himani Narjinari, a Niharika Tanwar, b Lakshay Kathuria, a Raksh Vir Jasra, b,c Akshai Kumar* a,b,d

aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
bCenter for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India
cReliance Industries limited, R&D Centre, Vadodara Manufacturing Division, Vadodara, 391 346, Gujarat
dJyoti and Bhupat School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati – 781039, Assam, India.
Email: akshaikumar@iitg.ac.in

Table of content

<table>
<thead>
<tr>
<th>S No</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Optimization Table</td>
<td>S2-S4</td>
</tr>
<tr>
<td>2.</td>
<td>HRMS analysis</td>
<td>S5-S13</td>
</tr>
<tr>
<td>3.</td>
<td>GC analysis</td>
<td>S14-S16</td>
</tr>
<tr>
<td>4.</td>
<td>EPR Spectra</td>
<td>S16</td>
</tr>
<tr>
<td>5.</td>
<td>NMR Spectra</td>
<td>S17-S37</td>
</tr>
<tr>
<td>6.</td>
<td>Calculation of KIE</td>
<td>S38</td>
</tr>
<tr>
<td>7.</td>
<td>Determination of magnetic moment by Evan’s method</td>
<td>S38</td>
</tr>
<tr>
<td>8.</td>
<td>References</td>
<td>S38</td>
</tr>
</tbody>
</table>
1. Optimization:

Table S1. Optimization of the chromium catalyzed solvent-free β-alkylation of 1-phenylethanol with benzyl alcohol under conventional heating

![Reaction Diagram]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base (X mol%)</th>
<th>Catalyst (Y mol%)</th>
<th>Yield (%) and [TON]</th>
<th>Selectivity of 4=((Yield of 4/Total yield 4+3)*100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na₂CO₃ (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>0[0]</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NaHCO₃ (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>0[0]</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K₂CO₃ (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>0[0]</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>KO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>5[1000]</td>
<td>2[400]</td>
</tr>
<tr>
<td>5</td>
<td>KOH (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>5±2[1000]</td>
<td>4±0[800]</td>
</tr>
<tr>
<td>6</td>
<td>NaOH (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>4±5[3000]</td>
<td>4[800]</td>
</tr>
<tr>
<td>7</td>
<td>NaOH (2.5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>11±2[2200]</td>
<td>5±1[1000]</td>
</tr>
<tr>
<td>8</td>
<td>NaOH (1.25)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>3±1[600]</td>
<td>2±1[400]</td>
</tr>
<tr>
<td>9</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>84±0.3[1680]</td>
<td>8±1[1600]</td>
</tr>
<tr>
<td>10</td>
<td>NaO'Bu (2.5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>9±2[1800]</td>
<td>3±1[600]</td>
</tr>
<tr>
<td>11</td>
<td>NaO'Bu (1.25)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>2±3[400]</td>
<td>1±1[200]</td>
</tr>
<tr>
<td>12</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>70±[7000]</td>
<td>6[600]</td>
</tr>
<tr>
<td>13</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>70±2[9333]</td>
<td>6±1[800]</td>
</tr>
<tr>
<td>14</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>71±0.1[14200]</td>
<td>5±1[1000]</td>
</tr>
<tr>
<td>15</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>61±2[12200]</td>
<td>3±1[600]</td>
</tr>
<tr>
<td>16</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>12±2[2400]</td>
<td>3±1[600]</td>
</tr>
<tr>
<td>17</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>5±0.5[1000]</td>
<td>2±1[400]</td>
</tr>
<tr>
<td>18</td>
<td>NaO'Bu (5)</td>
<td>CrCl₃.6H₂O(0.005)</td>
<td>79±2[15800]</td>
<td>12±1[2400]</td>
</tr>
<tr>
<td>19</td>
<td>NaO'Bu (5)</td>
<td>5(0.005)</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>5(0.005)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>5(0.005)</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[^a]: Conditions: Benzyl alcohol (4 mmol), 1-phenylethanol (4 mmol), base (X mol%), and Cr catalyst (Y mol%) were heated together at 140 °C for 3 hours. [^b]: Mol% of base is with respect to total alcohol content (1+2). [^c]: Yield determined from ¹H NMR analysis using toluene as an internal standard. Yields reported are the average of two runs. [^d]: Reaction performed at 120 °C. [^e]: Reaction performed at 100 °C. [^f]: TON are written in the parenthesis.
Table S2. Chromium catalyzed solvent-free β-alkylation of 1-phenyl ethanol with benzyl alcohol under microwave conditionsa

![Diagram of the reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Temperature (°C)</th>
<th>Catalyst</th>
<th>Yield (%)b and [TON]c</th>
<th>Selectivity of 4 = ((Yield of 4/Total yield 3+4)*100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>140</td>
<td>5</td>
<td>90[18000]</td>
<td>7[1400]</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>5</td>
<td>26[5200]</td>
<td>2[400]</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>5</td>
<td>8[1600]</td>
<td>2[400]</td>
</tr>
<tr>
<td>4</td>
<td>140</td>
<td>CrCl$_3$-6H$_2$O</td>
<td>76[15200]</td>
<td>3[600]</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>CrCl$_3$-6H$_2$O</td>
<td>31[6200]</td>
<td>3[600]</td>
</tr>
</tbody>
</table>

aConditions: Benzyl alcohol (2 mmol), 1-phenyl ethanol (2 mmol), NaO$_2$Bu (5 mol%), and Cr catalyst (0.005 mol%) were heated together in air at 140 °C for 1.5 hours under 75 W microwave irradiation. bMol% of base and catalyst is with respect to total alcohol content (1+2). cYield determined from 1H NMR analysis using toluene as an internal standard. Yields reported are the average of two runs. dTON are written in the parenthesis.
Table S3. Effect of hot filtration and mercury drop test in the chromium catalyzed solvent-free β-alkylation of 1-phenyl ethanol with benzyl alcohol under conventional heating

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base (5 mol%)a</th>
<th>Catalyst (Y mol %)b</th>
<th>Yield (%)c and [TON]d</th>
<th>Selectivity of 4 = (\frac{\text{Yield of 4}}{\text{Total yield 4+3}} \times 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NaO\text{Bu}</td>
<td>5</td>
<td>84±0.3[16800]</td>
<td>8±1[1600]</td>
</tr>
<tr>
<td>2d</td>
<td>NaO\text{Bu}</td>
<td>5</td>
<td>82[16400]</td>
<td>11[2200]</td>
</tr>
<tr>
<td>3e</td>
<td>NaO\text{Bu}</td>
<td>5</td>
<td>81[16200]</td>
<td>6[1200]</td>
</tr>
<tr>
<td>4</td>
<td>NaO\text{Bu}</td>
<td>CrCl\text{3.6H}_2\text{O}</td>
<td>79±2[15800]</td>
<td>12±1[2400]</td>
</tr>
<tr>
<td>5d</td>
<td>NaO\text{Bu}</td>
<td>CrCl\text{3.6H}_2\text{O}</td>
<td>83[16600]</td>
<td>9[1800]</td>
</tr>
<tr>
<td>6e</td>
<td>NaO\text{Bu}</td>
<td>CrCl\text{3.6H}_2\text{O}</td>
<td>80[16000]</td>
<td>6[1200]</td>
</tr>
</tbody>
</table>

\(^a \)Conditions: Benzyl alcohol (2 mmol), 1-phenyl ethanol (2 mmol), base (5 mol%), and Cr catalyst (Y mol%) were heated together in air at 140 °C for 3 hours. \(^b \)Mol% of base and catalyst is with respect to total alcohol content (1+2). \(^c \)Yield determined from \(^1\)H NMR analysis using toluene as an internal standard. Yields reported are the average of two runs. \(^d \)Result obtained from heating the filtrate for 2.5 h post hot-filtration after 30 minutes of reaction. \(^e \)Reaction performed in the presence of excess mercury. \(^f \)TON are written in the parenthesis.
2. HRMS analysis:

![HRMS analysis image](image)

Figure S1. HRMS (ESI) plot of complex 5.

![HRMS expanded spectra image](image)

Figure S2. HRMS (ESI) expanded spectra of m/z 406.9962 (a) Observed (b) Simulated.
Figure S3. HRMS (ESI) expanded spectra of m/z 429.1622 (a) Observed (b) Simulated.

Figure S4. HRMS (ESI) expanded spectra of m/z 461.1829 (a) Observed (b) Simulated.
Figure S5. HRMS (ESI) expanded spectra of m/z 506.2228 (a) Observed (b) Simulated.

Figure S6. HRMS (ESI) plot of the reaction mixture containing 1(4 mmol) and 2(4 mmol) in the presence of 5 mol% CrCl₃·6H₂O and 5 mol% NaOᵀBu at t = 0 h at 140 °C.
Figure S7. HRMS (ESI) expanded spectra of m/z 243.073 (a) Observed (b) Simulated.

Figure S8. HRMS (ESI) expanded spectra of m/z 431.5330 (a) Observed (b) Simulated.
Figure S9. HRMS(ESI) expanded spectra of m/z 687.3843 (a) Observed (b) Simulated.

Figure S10. HRMS (ESI) plot of the reaction mixture containing 1(4 mmol) and 2(4 mmol) in the presence of 5 mol% CrCl₃·6H₂O and 5 mol% NaO'Bu at t = 0 h at 140 °C.
Figure S11. HRMS (ESI) expanded spectra of m/z 352.2153 (a) Observed (b) Simulated.

Figure S12. HRMS (ESI) expanded spectra of m/z 766.2749 (a) Observed (b) Simulated.
Figure S13. HRMS (ESI) plot of the reaction mixture containing 1 (4 mmol) and 2 (4 mmol) in the presence of 5 mol% 5 and 5 mol% NaO\textsubscript{t}Bu at t = 0 h at 140 °C.

Figure S14. HRMS (ESI) expanded spectra of m/z 443.1747 (a) Observed (b) Simulated.
Figure S15. HRMS (ESI) plot of the reaction mixture containing 1 (4 mmol) and 2 (4 mmol) in the presence of 5 mol% 5 and 5 mol% NaO\textsubscript{Bu} at t = 1 h at 140 °C.

Figure S16. HRMS (ESI) expanded spectra of m/z 457.1656 (a) Observed (b) Simulated.
Figure S17. HRMS (ESI) expanded spectra of m/z 679.2920 (a) Observed (b) Simulated.

Figure S18. HRMS (ESI) expanded spectra of m/z 859.3874 (a) Observed (b) Simulated.
3. Gas Chromatography Analysis:

GC analysis (TCD detection) was performed on an Agilent 7820-GC instrument fitted with Agilent Front SSZ Inlet N2 HP-PLOT Q column (30 m length x 530 μm x 40 μm) using the following method:

Agilent 7820-GC back detector TCD
Oven temperature: 50 °C
Time at starting temp: 0 min
Hold time = 10 min
Inlet temperature: 100 °C
Detector temperature (TCD): 250 °C
Detector temperature (FID): 300 °C
Flow rate (carrier): 5 mL/min (N2)
Split ratio: 10

Figure S19: Evidence for H₂ evolution in the dehydrogenation of benzyl alcohol (1) catalyzed by 5 (0.01 mol %) and NaO'Bu (10 mol%) at 140 °C via GC analysis.
Figure S20: Evidence for H₂ evolution in the dehydrogenation of benzyl alcohol (1) catalyzed by CrCl₃.6H₂O (0.01 mol %) and NaO'Bu (10 mol%) at 140 °C via GC analysis.

Figure S21: Evidence for H₂ evolution in the dehydrogenation of 1-Phenyl ethanol (2) catalyzed by 5 (0.01 mol %) and NaO'Bu (10 mol%) at 140 °C via GC analysis.
Figure S22: Evidence for H₂ evolution in the dehydrogenation of 1-Phenyl ethanol (2) catalyzed by CrCl₃·6H₂O (0.01 mol %) and NaO'Bu (10 mol%) at 140 °C via GC analysis.

4. EPR analysis:

Figure S23. The X-band EPR spectra of the complex 5 recorded on a JES-FA200 ESR spectrometer at room temperature with microwave power of 0.998 mW and microwave frequency of 9.14 GHz.
5. NMR Data and Spectra:

1,3-diphenylpropan-1-ol (4a):

1H NMR (500 MHz, CDCl$_3$): δ 7.26 (d, $J = 4.3$ Hz, 4H), 7.18 (q, $J = 6.0$ Hz, 3H), 7.10 (d, $J = 7.5$ Hz, 3H), 4.60 (t, $J = 6.4$ Hz, 1H), 2.62-2.55 (m, 2H), 2.10 – 1.89 (m, 2H), 1.80 (s, 1H). 13C(1H) NMR (126 MHz, CDCl$_3$): δ 144.70, 141.92, 128.66, 127.79, 126.00, 74.04, 40.60, 32.20.

1-(3-methoxyphenyl)-3-phenylpropan-1-ol (4b):

1H NMR (500 MHz, CDCl$_3$): δ 7.33 – 7.18 (m, 6H), 6.94 (d, $J = 6.5$ Hz, 2H), 6.84 (d, $J = 8.0$ Hz, 1H), 4.69 (s, 1H), 3.83 (s, 3H), 2.80-2.66 (m, 2H), 2.19 – 2.00 (m, 2H), 1.92 (s, 1H). 13C(1H) NMR (151 MHz, CDCl$_3$): δ 146.43, 141.89, 129.68, 128.52, 125.99, 118.36, 113.22, 111.52, 73.95, 55.37, 40.53, 32.17.

1-(4-(tert-butyl)phenyl)-3-phenylpropan-1-ol (4d):

1H NMR (500 MHz, CDCl$_3$): δ 7.37 (d, $J = 8.2$ Hz, 2H), 7.26 (dd, $J = 15.2, 7.2$ Hz, 4H), 7.18 (dd, $J = 13.2, 7.2$ Hz, 3H), 4.66 (t, $J = 7.8$ Hz, 1H), 2.80 – 2.63 (m, 2H), 2.18 – 1.99 (m, 2H), 1.85 (d, $J = 2.9$ Hz, 1H), 1.32 (s, 9H). 13C(1H) NMR (126 MHz, CDCl$_3$): δ 150.76, 142.01, 141.68, 128.49, 125.94, 125.81, 73.82, 40.39, 34.66, 32.27, 31.49.

3-phenyl-1-(thiophen-2-yl)propan-1-ol (4f):

1H NMR (600 MHz, CDCl$_3$): δ 7.34 – 7.30 (m, 2H), 7.30 – 7.28 (m, 1H), 7.24 (d, $J = 7.9$ Hz, 3H), 7.02 – 6.99 (m, 2H), 4.99 – 4.93 (m, 1H), 2.84 – 2.71 (m, 2H), 2.30 – 2.15 (m, 2H), 2.05 (d, $J = 4.2$ Hz, 1H). 13C(1H) NMR (151 MHz, CDCl$_3$): δ 150.62, 141.57, 128.57, 126.09, 124.83, 124.07, 69.65, 40.82, 32.14.

1-(4-chlorophenyl)-3-phenylpropan-1-ol (4g):

1H NMR (500 MHz, CDCl$_3$): δ 7.32 (d, $J = 8.6$ Hz, 2H), 7.30 – 7.25 (m, 4H), 7.21 – 7.17 (m, 3H), 4.67 (ddd, $J = 8.3, 5.1, 3.3$ Hz, 1H), 2.76-2.63 (m, 2H), 2.14 – 1.95 (m, 2H), 1.88 (d, $J = 3.5$ Hz, 1H). 13C(1H) NMR (126 MHz, CDCl$_3$): δ 143.16, 141.62, 133.40, 128.78, 128.59, 128.55, 127.44, 126.10, 73.30, 40.64, 32.06.

1-(3-chlorophenyl)-3-phenylpropan-1-ol (4i):

1H NMR (600 MHz, CDCl$_3$): δ 7.38 (s, 1H), 7.34 – 7.26 (m, 4H), 7.23 (dd, $J = 13.4, 8.0$ Hz, 4H), 4.69 (dt, $J = 8.0, 4.1$ Hz, 1H), 2.80-2.68 (m, 2H), 2.16 – 2.00 (m, 2H), 1.98 (d, $J = 3.3$ Hz, 1H).
1-(3-bromophenyl)-3-phenylpropan-1-ol(4j):

1H NMR (600 MHz, CDCl$_3$): δ 7.54 (s, 1H), 7.43 (d, $J = 7.8$ Hz, 1H), 7.34 – 7.27 (m, 3H), 7.26 – 7.20 (m, 4H), 4.68 (dt, $J = 8.2$, 4.4 Hz, 1H), 2.81 – 2.67 (m, 2H), 2.16 – 1.97 (m, 3H). 13C(1H) NMR (151 MHz, CDCl$_3$): δ 147.07, 141.55, 130.77, 130.22, 129.15, 128.59, 128.55, 126.11, 124.63, 122.77, 73.26, 40.61, 32.03.

3-phenyl-1-(p-tolyl)propan-1-ol(4l):

1H NMR (600 MHz, CDCl$_3$): δ 7.31 (t, $J = 7.6$ Hz, 2H), 7.28 (d, $J = 8.0$ Hz, 2H), 7.21 (dd, $J = 16.2$, 7.7 Hz, 5H), 4.68 (t, $J = 8.1$, 4.3 Hz, 1H), 2.79 – 2.67 (m, 2H), 2.39 (s, 3H), 2.20 – 2.02 (m, 2H), 1.91 (t, 1H). 13C(1H) NMR (151 MHz, CDCl$_3$): δ 141.97, 141.69, 137.45, 129.31, 128.56, 128.49, 126.02, 125.94, 73.85, 40.47, 32.21, 21.24.

3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-ol(4m):

1H NMR (600 MHz, CDCl$_3$): δ 7.61 (d, $J = 8.1$ Hz, 2H), 7.46 (d, $J = 8.2$ Hz, 2H), 7.30 (t, $J = 7.6$ Hz, 2H), 7.20 (t, $J = 8.1$, 4.3 Hz, 1H), 4.76 (dt, $J = 8.1$, 4.3 Hz, 1H), 2.79 – 2.67 (m, 2H), 2.15 – 2.00 (m, 3H). 13C(1H) NMR (151 MHz, CDCl$_3$): δ 148.65, 141.44, 128.63, 128.54, 126.29, 126.17, 125.61, 125.58, 125.56, 125.53, 73.29, 40.69, 31.97.

1-(naphthalen-2-yl)-3-phenylpropan-1-ol(4p):

1H NMR (600 MHz, CDCl$_3$): δ 7.88 – 7.77 (m, 4H), 7.59 – 7.48 (m, 3H), 7.39 – 7.21 (m, 5H), 4.89 (pt, $J = 7.9$, 3.1 Hz, 1H), 2.82 – 2.70 (m, 2H), 2.30 – 2.15 (m, 2H), 2.03 (s, 1H). 13C(1H) NMR (151 MHz, CDCl$_3$): δ 142.01, 141.86, 133.41, 133.15, 128.59, 128.54, 128.52, 128.06, 127.83, 126.32, 126.01, 124.82, 124.17, 74.12, 40.46, 32.18.

1-(4-methoxyphenyl)-3-phenylpropan-1-ol(4q):

1H NMR (600 MHz, CDCl$_3$): δ 7.32 – 7.28 (m, 4H), 7.21 (d, $J = 7.1$ Hz, 3H), 6.92 (d, $J = 8.7$ Hz, 2H), 4.66 (t, $J = 6.6$, 1H), 3.83 (s, 3H), 2.76 – 2.64 (m, 2H), 2.20 – 2.00 (m, 2H), 1.86 (s, 1H). 13C(1H) NMR (151 MHz, CDCl$_3$): δ 159.24, 141.95, 136.80, 128.56, 127.34, 125.96, 114.02, 73.63, 55.42, 40.46, 32.25.

3-(3-methoxyphenyl)-1-phenylpropan-1-ol (4r):

1H NMR (500 MHz, CDCl$_3$): δ 7.25 – 7.06 (m, 6H), 6.70 – 6.61 (m, 3H), 4.57 – 4.51 (m, 1H), 3.66 (s, 3H), 2.65 – 2.48 (m, 2H), 2.14 (s, 1H), 1.95 (ddt, $J = 49.6$, 14.1, 7.3 Hz, 2H). 13C(1H) NMR (126 MHz, CDCl$_3$): δ 159.68, 143.52, 129.38, 128.52, 127.63, 125.97, 120.93, 114.26, 111.24, 77.09, 76.90, 73.82, 55.16, 40.37, 32.14.
1-phenyl-3-(m-tolyl)propan-1-ol (4s):

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 7.36 (d, \(J = 4.3\) Hz, 4H), 7.32 – 7.27 (m, 1H), 7.17 (t, \(J = 7.4\) Hz, 1H), 7.03 – 6.98 (m, 3H), 4.72 – 4.68 (m, 1H), 2.75-2.61 (m, 2H), 2.32 (s, 3H), 2.16 – 2.00 (m, 3H), 1.85 (s, 1H). \(^{13}\)C\({^1}\)H NMR (151 MHz, CDCl\(_3\)): \(\delta\) 144.71, 141.83, 138.08, 129.39, 128.65, 128.42, 127.77, 126.73, 126.06, 125.56, 74.10, 40.63, 32.12, 21.53.

1-phenyl-3-(pyridin-3-yl)propan-1-ol (4t):

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 8.43 – 8.38 (m, 2H), 7.52 (dt, \(J = 7.9, 2.0\) Hz, 1H), 7.37 (d, \(J = 4.5\) Hz, 4H), 7.32 – 7.28 (m, 1H), 7.21 (dd, \(J = 7.8, 4.8\) Hz, 1H), 4.70 (dd, \(J = 8.0, 5.2\) Hz, 1H), 2.80-2.68 (m, 3H), 2.17-1.99 (m, 3H). \(^{13}\)C\({^1}\)H NMR (151 MHz, CDCl\(_3\)): \(\delta\) 147.44, 144.72, 137.43, 136.21, 128.79, 127.94, 126.10, 73.59, 40.33, 29.39.

3-(naphthalen-1-yl)-1-phenylpropan-1-ol (4u):

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 8.02 – 7.99 (m, 1H), 7.89 – 7.85 (m, 1H), 7.74 (d, \(J = 8.1\) Hz, 1H), 7.53 – 7.47 (m, 3H), 7.43 – 7.35 (m, 6H), 7.34 – 7.30 (m, 1H), 4.83 (dt, \(J = 8.0, 4.2\) Hz, 1H), 3.31 – 3.10 (m, 2H), 2.32 – 2.15 (m, 2H), 1.96 (d, \(J = 3.3\) Hz, 1H). \(^{13}\)C\({^1}\)H NMR (151 MHz, CDCl\(_3\)): \(\delta\) 144.65, 138.12, 134.04, 131.96, 128.89, 128.69, 127.85, 126.82, 126.09, 125.93, 125.68, 125.59, 123.91, 74.35, 39.98, 29.26.

3-(3-chlorophenyl)-1-phenylpropan-1-ol (4z):

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 7.36 (d, \(J = 6.5\) Hz, 4H), 7.29 (ddd, \(J = 8.5, 5.8, 2.1\) Hz, 1H), 7.22 – 7.15 (m, 3H), 7.07 (dt, \(J = 7.4, 1.5\) Hz, 1H), 4.68 (t, \(J = 6.4\) Hz, 1H), 2.77 – 2.62 (m, 2H), 2.15 – 1.97 (m, 2H), 1.89 (s, 1H). \(^{13}\)C\({^1}\)H NMR (151 MHz, CDCl\(_3\)): \(\delta\) 144.49, 143.99, 134.25, 129.75, 128.72, 127.91, 126.19, 126.00, 73.84, 40.30, 31.85.

3-(4-chlorophenyl)-1-phenylpropan-1-ol (4zb):

\(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta\) 7.41 – 7.35 (m, 4H), 7.32 (t, \(J = 7.6\) Hz, 1H), 7.29 – 7.25 (m, 2H), 7.14 (d, \(J = 8.3\) Hz, 2H), 4.70 (ddd, \(J = 8.2, 3.4\) Hz, 1H), 2.78 – 2.63 (m, 2H), 2.17 – 1.98 (m, 2H), 1.90 (d, \(J = 3.3\) Hz, 1H). \(^{13}\)C\({^1}\)H NMR (151 MHz, CDCl\(_3\)): \(\delta\) 144.53, 140.34, 131.69, 129.92, 128.71, 128.60, 127.89, 126.01, 73.85, 40.44, 31.51.
1-phenyl-3-(p-tolyl)propan-1-ol(4ze):

1H NMR (600 MHz, CDCl$_3$): δ 7.40 – 7.35 (m, 4H), 7.30 (tt, $J = 6.5$, 3.0 Hz, 1H), 7.12 (s, 4H), 4.71 – 4.67 (m, 1H), 2.76 – 2.62 (m, 2H), 2.35 (s, 3H), 2.17 – 2.00 (m, 3H).13C(1H) NMR (151 MHz, CDCl$_3$): δ 144.71, 135.38, 129.18, 128.60, 128.42, 127.70, 126.05, 73.98, 40.65, 21.10.

Figure S24. 1H NMR spectra of 1,3-diphenylpropan-1-ol (4a) recorded in CDCl$_3$.
Figure S25. 13C(1H) NMR spectra of 1,3-diphenylpropan-1-ol(4a) recorded in CDCl$_3$.

Figure S26: 1H NMR spectra of 1-(3-methoxyphenyl)-3-phenylpropan-1-ol(4b) recorded in CDCl$_3$.
Figure S27: 13C(1H) NMR spectra of 1-(3-methoxyphenyl)-3-phenylpropan-1-ol(4b) recorded in CDCl$_3$.

Figure S28: 1H NMR spectra of 1-(4-(tert-butyl)phenyl)-3-phenylpropan-1-ol(4d) recorded in CDCl$_3$.
Figure S29: 13C(1H) NMR spectra of 1-(4-(tert-butyl)phenyl)-3-phenylpropan-1-ol(4d) recorded in CDCl$_3$.

Figure S30: 1H NMR spectra of 3-phenyl-1-(thiophen-2-yl)propan-1-ol(4f) recorded in CDCl$_3$.
Figure S31: 13C(1H) NMR spectra of 3-phenyl-1-(thiophen-2-yl)propan-1-ol(4f) recorded in CDCl$_3$.

Figure S32: 1H NMR spectra of 1-(4-chlorophenyl)-3-phenylpropan-1-ol(4g) recorded in CDCl$_3$.
Figure S33: 13C (1H) NMR spectra of 1-(4-chlorophenyl)-3-phenylpropan-1-ol (4g) recorded in CDCl$_3$.

Figure S34: 1H NMR spectra of 1-(3-chlorophenyl)-3-phenylpropan-1-ol(4i) recorded in CDCl$_3$.
Figure S35: 1H NMR spectra of 1-(3-bromophenyl)-3-phenylpropan-1-ol(4j) recorded in CDCl$_3$.

Figure S36: 13C(1H) NMR spectra of 1-(3-bromophenyl)-3-phenylpropan-1-ol(4j) recorded in CDCl$_3$.
Figure S37: 1H NMR spectra of 3-phenyl-1-(p-tolyl)propan-1-ol (4l) recorded in CDCl$_3$.

Figure S38: 13C(1H) NMR spectra of 3-phenyl-1-(p-tolyl)propan-1-ol (4l) recorded in CDCl$_3$.
Figure S39: 1H NMR spectra of 3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-ol (4m) recorded in CDCl$_3$.

Figure S40: 13C(1H) NMR spectra of 3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-ol (4m) recorded in CDCl$_3$.
Figure S41: 1H NMR spectra of 1-(naphthalen-2-yl)-3-phenylpropan-1-ol(4p) recorded in CDCl$_3$.

Figure S42: 13C(1H) NMR spectra of 1-(naphthalen-2-yl)-3-phenylpropan-1-ol(4p) recorded in CDCl$_3$.
Figure S43: 1H NMR spectra of 1-(4-methoxyphenyl)-3-phenylpropan-1-ol(4q) recorded in CDCl$_3$.

Figure S44: 13C(1H) NMR spectra of 1-(4-methoxyphenyl)-3-phenylpropan-1-ol(4q) recorded in CDCl$_3$.
Figure S45: 1H NMR spectra of 3-(3-methoxyphenyl)-1-phenylpropan-1-ol(4r) recorded in CDCl$_3$.

Figure S46: 13C(1H) NMR spectra of 3-(3-methoxyphenyl)-1-phenylpropan-1-ol(4r) recorded in CDCl$_3$.
Figure S47: 1H NMR spectra of 1-phenyl-3-(m-tolyl) propan-1-ol (4s) recorded in CDCl$_3$.

Figure S48: 13C(1H) NMR spectra of 1-phenyl-3-(m-tolyl)propan-1-ol (4s) recorded in CDCl$_3$.
Figure S49: 1H NMR spectra of 1-phenyl-3-(pyridin-3-yl)propan-1-ol(4t) recorded in CDCl$_3$.

Figure S50: 13C(1H) NMR of 1-phenyl-3-(pyridin-3-yl)propan-1-ol(4t) recorded in CDCl$_3$.
Figure S51: 1H NMR spectra of 3-(naphthalen-1-yl)-1-phenylpropan-1-ol(4u) recorded in CDCl$_3$.

Figure S52: 13C(1H) NMR spectra of 3-(naphthalen-1-yl)-1-phenylpropan-1-ol(4u) recorded in CDCl$_3$.
Figure S53: 1H NMR spectra of 3-(3-chlorophenyl)-1-phenylpropan-1-ol(4z) recorded in CDCl$_3$.

Figure S54: 13C(1H) NMR spectra of 3-(3-chlorophenyl)-1-phenylpropan-1-ol(4z) recorded in CDCl$_3$.
Figure S55: 1H NMR spectra of 3-(4-chlorophenyl)-1-phenylpropan-1-ol (4zb) recorded in CDCl$_3$.

Figure S56: 13C(1H) NMR spectra of 3-(4-chlorophenyl)-1-phenylpropan-1-ol (4zb) recorded in CDCl$_3$.

S36
Figure S57: 1H NMR spectra of 1-phenyl-3-(p-tolyl)propan-1-ol(4ze) recorded in CDCl$_3$.

Figure S58: 13C(1H) NMR spectra of 1-phenyl-3-(p-tolyl)propan-1-ol(4ze) recorded in CDCl$_3$.

S37
6. Calculation of Kinetic Isotopic Effect (KIE):

\[
\frac{k_{\text{Ha}}}{k_{\text{D}}} = \text{KIE}
\]

Where, \(k_{\text{Ha}} \) and \(k_{\text{D}} \) are the proton content and deuterium content at C_a of the product 4a as determined by \(^1\text{H}-\text{NMR}\)

\[
k_{\text{Ha}} = \frac{\text{Integral value}}{\text{Number of protons}} \times 100 = A \times 100
\]

\[
k_{\text{D}} = (1-A)\times100
\]

7. Magnetic moment of 5 in solution (Evan’s method):

Magnetic moment in solution was measured by following the Evan’s NMR method.\(^{1-3}\) A solution of \((^\text{Ph}_2\text{NNN})\text{CrCl}_3\) (0.00055 g, 0.00125 mmol) in a 0.5 mL mixture of MeOH-d₄/t-BuOH (98:2) was prepared. To the same NMR tube a capillary containing the 2% t-BuOH in MeOH-d₄ solution was inserted. NMR spectrum was recorded on a Bruker ASCEND 600 operating at 600 MHz. A chemical shift difference of 30 Hz was observed for the t-BuOH peak for the samples in the inner and outer tubes. Based on the equation\(^2\)

\[
\mu_0=798(\chi_M T)^{0.5} \text{[T= temperature of measurement and } \chi_M = 3\Delta f/1000fc, \text{where } \Delta f \text{ is the paramagnetic shift of the solvent in Hz, } f \text{ is the frequency of the NMR instrument in Hz, and } c \text{ is the molar concentration of the metal complex]}, \text{ we have observed the magnetic moment } \mu_{\text{eff}} = 3.4 \mu_0 \text{ which is in agreement with a octahedral Cr(III) species.}\(^4\)

Subsequently, NaOH (0.044g, 1.1 mmol) was added to a stock solution of \((^\text{Ph}_2\text{NNN})\text{CrCl}_3\) (0.0006 g, 0.00145 mmol) in a 0.5 mL mixture of MeOH-d₄/t-BuOH (98:2). To the same NMR tube a capillary containing the 2% t-BuOH in MeOH-d₄ solution was inserted. NMR spectrum was recorded on a Bruker ASCEND 600 operating at 600 MHz. A chemical shift difference of 72 Hz was observed for the t-BuOH peak for the samples in the inner and outer tubes which gave a magnetic moment of 4.8 \(\mu_0\) which is in agreement with a octahedral Cr(II) species.\(^4\)

8. References: