1	Supplementary Information
2	
3	Synergy of nitrogen vacancies and partially broken hydrogen bonds in
4	graphitic carbon nitride for superior photocatalytic hydrogen evolution
5	under visible light
6	
7	
8	Haifeng Dang ^{a,*} , Suhua Mao ^{a,b} , Qi Li ^b , Mengyun Li ^a , Mengmeng Shao ^a , Wenlong Wang ^a ,
9	Quanbing Liu ^b
10	
11	^a School of Materials Science and Engineering, Dongguan University of Technology, Dongguan
12	523808, PR China
13	^b School of Chemical Engineering and Light Industry, Guangdong University of Technology,
14	Guangzhou 510006, PR China
15	
16	
17	

^{*} Corresponding author.

E-mail: danghf@dgut.edu.cn (H. Dang).

36 Fig. S3 UV-visible absorption spectroscopy of HCN, BCN and BNCNx with different weight ratios

(40~15).

37

38

35

39

40 Fig. S4 Photocatalytic hydrogen production of HCN, BCN and BNCNx with different weight ratios

41

(40~15) under visible-light irradiation (λ > 400 nm).

43 Fig. S5 Photocatalytic hydrogen evolution performances of as-prepared HCN, BCN and BNCN20

42

with 1.5 wt% Pt under white light illumination.

45

48 Fig. S6 XRD patterns of the BNCN20 before and after four circulating runs of hydrogen production.

Sample	$\begin{array}{l} S_{BET} \\ [m^2 \ g^{\text{-1}}] \end{array}$	S_{ext}^{1} [m ² g ⁻¹]	S_{micro} $[m^2 g^{-1}]$	V_{tol}^2 [cm ³ g ⁻¹]	V _{micro} [cm ³ g ⁻¹]	$V_{meso}{}^3$ [cm ³ g ⁻¹]
HCN	3.2342	4.3566		0.06054		0.06054
BCN	28.6470	20.8378	7.8092	0.195879	0.003322	0.192557
BNCN20	40.3037	36.0487	4.2549	0.2564	0.001959	0.254402

661 Determined from t-plot method.672 Determined from adsorbed volume at $P/P_0 = 0.98$.683 $V_{meso}=V_{tol}-V_{micro}$.6970

Table S2. The deconvolution results of C 1s and N 1s XPS spectra of HCN, BCN, and BNCN20.

		C (eV)			N (eV)		
Samples	N-C=N	C-C/C=C	NH _x	N _{3C}	N_{2C}	NH _x /N _{3C}	N_{2C}/N_{3C}
HCN	288.2	284.8	401.0	400.1	398.5	0.88	7.89
BCN	288.2	284.8	401.0	400.1	398.5	0.77	7.85
BNCN20	288.2	284.8	401.0	399.8	398.5	0.68	5.98

76 Table S3. Relative quantification of the Solid-State MAS 13C NMR spectra of HCN, BCN and

•
•

Sample	C3/C2
HCN	1.49
BCN	1.42
BNCN20	1.92

81 Table S4. The apparent quantum efficiency of HCN, BCN and BNCN20 (loaded with 1.5wt% Pt
82 by in-situ photoreduction) under different wavelengths.

83

AQE Sample	405 nm	420 nm	435 nm	450 nm	475 nm	500 nm
HCN	0.68%	0.40%	0.12%	0	0	0
BCN	2.12%	2.29%	3.19%	2.84%	0	0
BNCN20	9.58%	8.57%	8.38%	4.21%	2.91%	0

84

- 85
- 86
- 87

88 References

- 89 [S1] J. Zhang, S. Gong, N. Mahmood, L. Pan, X. Zhang and J. Zou, Oxygen-doped nanoporous
- 90 carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic
 91 hydrogen evolution. *Appl. Catal. B*, 2018, **221**, 9-16.
- 92 [S2] K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker and B.V. Lotsch,
- 93 Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am.
- 94 *Chem. Soc.*, 2014, **136**, 1730-1733.
- 95 [S3] Y. Guo, J. Li, Y. Yuan, L. Li, M. Zhang, C. Zhou and Z. Lin, A rapid microwave-assisted
- 96 thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation. *Angew*.
- 97 Chem. Int. Ed., 2016, 55, 14693-14697.

98 [S4] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L. Wu, C. Tung and T.

- 29 Zhang, Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable
 band structures for efficient visible-light-driven hydrogen evolution. *Adv. Mater.*, 2017, 29,
 101 1605148.
- 102 [S5] D. Zhang, Y. Guo and Z. Zhao, Porous defect-modified graphitic carbon nitride via a facile
 103 one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible
 104 light irradiation. *Appl. Catal. B*, 2018, 226, 1-9.
- 105 [S6] Y. Kang, Y. Yang, L. Yin, X. Kang, L. Wang, G. Liu and H. Cheng, Selective breaking of
- hydrogen bonds of layered carbon nitride for visible light photocatalysis. *Adv. Mater.*, 2016, 28,
 6471-6477.
- 108 [S7] B. Li, Y. Si, B. Zhou, Q. Fang, Y. Li, W. Huang, W. Hu, A. Pan, X. Fan and G. Huang,
 Doping-induced hydrogen-bond engineering in polymeric carbon nitride to significantly boost
 the photocatalytic H₂ evolution performance. *ACS Appl. Mater. Interfaces*, 2019, **11**, 17341117349.
- 112 [S8] J. Yang, Y. Liang, K. Li, G. Yang, K. Wang, R. Xu and X. Xie, One-step synthesis of novel K⁺
- and cyano groups decorated triazine-/heptazine-based g-C₃N₄ tubular homojunctions for
 boosting photocatalytic H₂ evolution. *Appl. Catal. B*, 2020, **262**, 118252.
- 115 [S9] W. Iqbal, B. Qiu, Q. Zhu, M. Xing and J. Zhang, Self-modified breaking hydrogen bonds to
 116 highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen
- 117 production. *Appl. Catal. B*, 2018, **232**, 306-313.