Solvent/Metal-Free Benzimidazolium-Based Carboxyl Functionalized

Porphyrin Photocatalyst for Room-Temperature Alkylation of Amines

under Irradiation of Visible Light

Subodh Uttamrao Raut^a, Kamlesh Rudreshwar Balinge^b, Shubham Avinash Deshmukh^a, Shital Haribhau Barange^a, Bhairav Chandroday Mataghare^a and Pundlik Ramhau Bhagat^a*

(E-mail:*drprbhagat111@gmail.com)

a. Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India

b. Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu 602105, India

Sr. No.	Contents	Pg. No.
1	Fig.S1. ¹ H NMR Spectrum of compound 4B Fig.S2. ¹³ C NMR Spectrum of compound 4B	4
2	Fig.S3 FT-IR Spectrum of compound 4B Fig.S4 GCMS Spectrum of compound 4B	5
3	Fig.S5 ¹ H NMR Spectrum of compound 4C Fig.S6 ¹³ CNMR Spectrum of compound 4C	6
4	Fig.S7. FT-IR Spectrum of Compound 4C Fig.S8 GCMS Spectrum of compound 4C	7
5	Fig.S9 ¹ H NMR Spectrum of Compound 4D Fig.S10 ¹³ CNMR Spectrum of compound 4D	8
6	Fig.S11. ¹ H NMR spectrum of compound 4E	9
	Fig.S12. ET ID execting of compound 4E	
7	Fig.S13F1-IK spectrum of compound 4E Fig.S14 ⁻¹ H NMR spectrum of compound 4E	10
8	Fig.S15. FT-IR spectrum of compound 4F Fig.S16. ¹ H NMR spectrum of compound 4F	11
9	Fig.S17. ¹ H NMR spectrum of Photocatalyst (MFBBCFPc)	12
	Fig.S18FT-IR spectrum of Photocatalyst (MFBBCFPc)	12
10	Fig.S19 ¹ H NMR spectrum of N-ethyl aniline (D1) Fig.S20 GCMS spectrum of N-ethyl aniline (D1)	13
11	Fig.S21. ¹ H NMR spectrum of N-ethyl-4-nitroaniline (D2) Fig.S22 ¹ H NMR spectrum of N ¹ , N ⁴ -dimethylbenzene-1, 4-diamine (D3)	14
12	Fig.S23 GCMS spectrum of N ¹ , N ⁴ -dimethylbenzene-1, 4-diamine (D3) Fig.S24 ¹ H NMR spectrum of N ¹ , N ⁴ -diethylbenzene-1,4-diamine (D4)	15
13	Fig.S25 ¹ H NMR spectrum of N^1 , N^4 -dipropylbenzene-1, 4-diamine (D5) Fig.S26 GCMS spectrum of N^1 , N^4 -dipropylbenzene-1, 4-diamine (D5)	16
14	Fig.S27 ¹ H NMR spectrum of 4-chloro-N, N-dimethyl aniline (D6) Fig. S28 ¹³ CNMR spectrum of 4-chloro-N, N-dimethyl aniline (D6)	17
15	Fig. S29 GCMS spectrum of 4-chloro-N, N-dimethyl aniline (D6) Fig. S30 ¹ H NMR spectrum of 4-chloro-N,N-diethylaniline (D7)	18
16	Fig. S31 ¹³ CNMR spectrum of 4-chloro-N,N-diethylaniline (D7) Fig. S32 GCMS spectrum of 4-chloro-N,N-diethylaniline (D7)	19
17	Fig. S33 ¹ H NMR spectrum of 4-chloro-N,N-dipropylaniline (D8) Fig. S34 ¹³ C NMR spectrum of 4-chloro-N,N-dipropylaniline (D8)	20

18	Fig. S35 ¹ H NMR spectrum of 4-chloro-N, N-dibutylaniline (D9)	21
	Fig. S36 ¹ H NMR spectrum of 4-bromo-N,N-dimethylaniline (D10)	
	Grand I I I I I I I I I I I I I I I I I I I	22
19	Fig. S37 ¹ H NMR spectrum of 4-bromo-N,N-diethylaniline (D11)	
	Fig. S38 GCMS spectrum of 4-bromo-N,N-diethylaniline (D11)	
20	Fig. S39 ¹ H NMR 4-bromo-N, N-dipropylaniline (D12)	23
	Fig. S40 ¹ H NMR spectrum of 4-bromo-N, N-dibutylaniline (D13)	
21	Fig. S41 ¹ H NMR spectrum of 4-bromo-N, N-dipentylaniline (D14)	24
	Fig. S42 ¹ H NMR spectrum of 1-methyl-1H-pyrrole (D15)	25
22	Fig. S43 GCMS spectrum of 1-methyl-1H-pyrrole (D15)	25
	Fig. S44 ¹ H NMR spectrum of 1-ethyl-1H-pyrrole (D16)	
		26
23	Fig. S45 GCMS spectrum of 1-ethyl-1H-pyrrole (D16)	
23		
	Fig. S46 ¹ H NMR spectrum of 1-propyl-1H-pyrrole (D17)	
24	Fig. S47 GCMS spectrum of 1-propyl-1H-pyrrole (D17)	27
	Fig. S48 'H NMR spectrum of 1-Butyl I-IH-pyrrole (D18)	20
25	Fig. S49 GCMS spectrum of 1-Butyl I-IH-pyrrole (D18)	28
	Fig.S50 H NMR spectrum of 1-pentyl-1H-pyrrole (D19)	20
26	Fig.S51 H NMR spectrum of 1 heavyl 1H pyrrole (D20)	29
	Fig S52 ¹³ GCMS spectrum of 1-hexyl-1H-pyrrole (D20)	30
27	Fig S54 ¹ H NMR spectrum of 4-methylmorpholine (D20)	50
	Fig S55 ¹ H NMR spectrum of 4-Ethyl morpholine (D22)	31
	Fig. S56 ¹ H NMR spectrum of 4-propylmorpholine (D23)	01
	Fig S57 ¹³ CNMR spectrum of 4-propylmorpholine (D23)	32
28	Fig. S58 ¹ H NMR spectrum of 4-butylmorpholine (D24)	52
	Fig. S59 ¹ H NMR spectrum of 4-pentylmorpholine (D25)	33
29	Fig. S60 ¹³ C NMR spectrum of 4-pentylmorpholine (D25)	
	Fig. S61 ¹ H NMR spectrum of 4-bexylmorpholine (D26)	
30	Fig. S62 ¹³ C NMR spectrum of 4 -hexylmorpholine (D26)	51
	Fig. S62 ¹ U NMP spectrum of 4 optulmorpholine (D20)	25
31	Fig. So 11 NMR spectrum of 4-octylholpholine (D27)	55
	Fig. S64 C NMR spectrum of N^1 N^4 dipensible (D27)	26
	Fig. S66 ¹ H NMR spectrum of $N^1 N^4$ -bis(furan-2-vlmethyl)benzene-1.4-	50
52	diamine(D29)	
	Fig S67 ¹ H NMR spectrum of N-benzylaniline (D30)	37
33	Fig. S68 ¹ H NMR spectrum of N-(furan-2-vlmethyl) aniline (D31)	0,
	Fig. S60 ¹ GCMS spectrum of N (furen 2 ylmethyl) aniline (D31)	28
34	Fig. S09 OCMS spectrum of in-(futal-2-yintetriyi) annine (D51)	50
	Fig. S70 Leaching test of photocatalyst under optimized conditions	30
35	Fig. S72 Atomic absorption spectroscopy of Zn	39
	Table S1 Comparison of hinding energies of different metals in XPS	40
36	Table S2. Elemental ID and Quantification obtained from XPS data	то
	Table S3. Atomic absorption spectroscopy of Zn	41
37	Table S4. ICP-OES of CN-35 and MFBBCFPC	

Fig.S1.¹H NMR Spectrum of compound 4B

Fig.S2.¹³C NMR Spectrum of compound 4B

Fig.S3 FT-IR Spectrum of compound 4B

Fig.S4 GCMS Spectrum of compound 4B

Fig.S5¹H NMR Spectrum of compound 4C

Fig. S6¹³CNMR Spectrum of compound 4C

Fig.S7. FT-IR Spectrum of Compound 4C

Fig.S8 GCMS Spectrum of compound 4C

Fig.S9 ¹H NMR Spectrum of Compound 4D

Fig.S10¹³ CNMR Spectrum of compound 4D

Fig.S11. ¹H NMR spectrum of compound 4E

Fig.S12. ¹³ CNMR spectrum of compound 4E

Fig.S14. ¹H NMR spectrum of compound 4F

Fig.S15. ¹³CNMR spectrum of compound 4F

Fig.S16. FT-IR spectrum of compound 4F

Fig.S17.¹H NMR spectrum of Photocatalyst (MFBBCFPc)

Fig.S19¹H NMR spectrum of N-ethyl aniline (**D1**)

Fig.S20 GCMS spectrum of N-ethyl aniline (D1)

Fig.S21. ¹H NMR spectrum of N-ethyl-4-nitroaniline (**D2**)

Fig.S22 ¹H NMR spectrum of N¹, N⁴-dimethylbenzene-1, 4-diamine (D3)

Fig.S23 GCMS spectrum of N¹, N⁴-dimethylbenzene-1, 4-diamine (D3)

Fig.S24 ¹H NMR spectrum of N¹, N⁴-diethylbenzene-1,4-diamine (**D4**)

Fig.S25 ¹H NMR spectrum of N^1 , N^4 -dipropylbenzene-1, 4-diamine (**D5**)

Fig.S26 GCMS Spectrum of N1,N4-Dipropylbenzene-1,4-diamine (D5)

FigS.27 ¹H NMR spectrum of 4-chloro-N, N-dimethyl aniline (**D6**)

Fig. S28¹³ CNMR spectrum of 4-chloro-N, N-dimethyl aniline (D6)

Fig.S29 GCMS spectrum of 4-chloro-N, N-dimethyl aniline (D6)

Fig. S30 ¹H NMR spectrum of 4-chloro-N,N-diethylaniline (**D7**)

Fig. S31¹³ CNMR spectrum of 4-chloro-N,N-diethylaniline (**D7**)

Fig. S32 GCMS spectrum of 4-chloro-N,N-diethylaniline (D7)

Fig. S33 ¹H NMR spectrum of 4-chloro-N,N-dipropylaniline (**D8**)

Fig. S34 ¹³C NMR spectrum of 4-chloro-N,N-dipropylaniline (D8)

Fig. S35 ¹H NMR spectrum of 4-chloro-N, N-dibutylaniline (**D9**)

Fig. S36 ¹H NMR spectrum of 4-bromo-N,N-dimethylaniline (D10)

Fig.S37 ¹H NMR spectrum of 4-bromo-N,N-diethylaniline (**D11**)

Fig. S38 GCMS spectrum of 4-bromo-N,N-diethylaniline (D11)

Fig.S39¹H NMR 4-bromo-N, N-dipropylaniline (D12)

Fig. S40 ¹H NMR spectrum of 4-bromo-N, N-dibutylaniline (**D13**)

Fig. S41 ¹H NMR spectrum of 4-bromo-N, N-dipentylaniline (**D14**)

Fig. S42 ¹H NMR spectrum of 1-methyl-1H-pyrrole (**D15**)

Fig. S43 GCMS spectrum of 1-methyl-1H-pyrrole (D15)

Fig. S44 ¹H NMR spectrum of 1-ethyl-1H-pyrrole (**D16**)

Fig. S45 GCMS spectrum of 1-ethyl-1H-pyrrole (D16)

Fig. S46 ¹HNMR spectrum of 1-Propyl l-1H-pyrrole (**D17**)

Fig. S47 GCMS spectrum of 1-Propyl l-1H-pyrrole (D17)

Fig. S48 ¹H NMR spectrum of 1-Butyl l-1H-pyrrole (D18)

Fig. S49 GCMS spectrum of 1-Butyl l-1H-pyrrole (D18)

Fig.S50 ¹H NMR spectrum of 1-pentyl-1H-pyrrole (D19)

Fig.S51 ¹H NMR spectrum of 1-hexyl-1H-pyrrole (**D20**)

Fig.S52¹³ CNMR spectrum of 1-hexyl-1H-pyrrole (D20)

Fig.S53 ¹³ GCMS spectrum of 1-hexyl-1H-pyrrole (**D20**)

Fig.S54 ¹H NMR spectrum of 4-methylmorpholine (**D21**)

Fig.S55 ¹H NMR spectrum of 4-Ethyl morpholine (**D22**)

Fig.S56 ¹H NMR spectrum of 4-Propyl morpholine (**D23**)

Fig.S57¹³ CNMR spectrum of 4-propylmorpholine (**D23**)

Fig. S58 ¹H NMR spectrum of 4-butylmorpholine (D24)

Fig. S59 ¹H NMR spectrum of 4-pentylmorpholine (**D25**)

Fig. S60 ¹³C NMR spectrum of 4-pentylmorpholine (**D25**)

Fig. S61 ¹H NMR spectrum of 4-hexylmorpholine (**D26**)

Fig. S62 ¹³C NMR spectrum of 4-hexylmorpholine (**D26**)

Fig. S63 ¹H NMR spectrum of 4-octylmorpholine (**D27**)

Fig. S64 ¹³C NMR spectrum of 4-octylmorpholine (**D27**)

Fig. S65 ¹H NMR spectrum of N¹, N⁴-dibenzylbenzene-1,4-diamine (**D28**)

Fig. S66 ¹H NMR spectrum of N¹,N⁴-bis(furan-2-ylmethyl)benzene-1,4-diamine(**D29**)

Fig. S67 ¹H NMR spectrum of N-benzylaniline (D30)

Fig. S68 ¹H NMR spectrum of N-(furan-2-ylmethyl) aniline (**D31**)

Fig. S69 ¹GCMS spectrum of N-(furan-2-ylmethyl) aniline (D31)

Fig. S70 Leaching test of photocatalyst under optimized conditions

Fig. S71 Home-made Photocatalytic Reactor

Fig. S72. Atomic absorption spectroscopy of Zn

Sr.no	Porphyrin	Range of	References
	catalyst	energies in XPS	
1.	Zn-TESP	Zn 2p _{3/2} B.E range 1020- 1025 eV	Killian, M. S., Gnichwitz, J. F., Hirsch, A., Schmuki, P., & Kunze, J. (2010). ToF-SIMS and XPS studies of the adsorption characteristics of a Zn-porphyrin on TiO ₂ . <i>Langmuir</i> , <i>26</i> (5), 3531-3538.
2.	Platinum complex/Zn- porphyrin	Pt 4f _{7/2} B.E range 70-73 eV	Polzonetti, G., Ferri, A., Russo, M. V., Iucci, G., Licoccia, S., & Paolesse, R. (1999). Platinum complex/Zn-porphyrin macrosystem assemblies: Electronic structure and conformational investigation by x-ray photoelectron spectroscopy. <i>Journal of Vacuum Science & Technology A:</i> <i>Vacuum, Surfaces, and Films, 17</i> (3), 832-839.
3.	Porphyrin- based porous polyimide polymer/Pd nanoparticle	Pd 3d _{5/2} B.E range 335-345 eV	Zhu, W., Wang, X., Li, T., Shen, R., Hao, S. J., Li, Y., & Gu, Z. G. (2018). Porphyrin-based porous polyimide polymer/Pd nanoparticle composites as efficient catalysts for Suzuki–Miyaura coupling reactions. Polymer Chemistry, 9(12), 1430-1438.
4.	Fe (III) Porphyrin surface anchored TiO ₂	Fe 2p _{3/2} B.E 710 eV	ArunaKumari, M. L., & Devi, L. G. (2015). New insights into the origin of the visible light photocatalytic activity of Fe (III) porphyrin surface anchored TiO ₂ . Environmental Science: Water Research & Technology, 1(2), 177-187.
5.	MFBBCFPc	No evidence of metal B.E with respect to Zn/ Pt/ Pd/ Fe observed in MFBBCFPc photocatalyst	Present work (Fig.6 (a) XPS survey of MFBBCFPc, (b) High resolution of O1s of MFBBCFPc, (c) High resolution of N1s of MFBBCFPc, (d) High resolution of C1s of MFBBCFPc, (e) High resolution of Br3d of MFBBCFPc)

Table S1. Comparison of binding energies of different metals in XPS

Table S2. Elemental ID and Quantification obtained from XPS data

Name	Peak BE	FWHM eV	Area (P) CPS.eV	Atomic %	Q
C1s	285.53	1.75	895404.71	67.88	1
O1s	532.95	3.27	318090.56	9.98	1
N1s	400.95	3.49	171619.32	8.39	1
Br3d	68.83	2.97	43531.69	1.06	1
Si2p ???	102.96	4.01	11327.96	0.86	1
S2p ???	169.59	2.00	10906.55	0.41	1
Br3d	67.91	2.02	5675.21	0.14	1
C1s	284.87	1.73	116234.76	8.81	1
N1s	400.44	2.99	22530.84	1.10	1
O1s	532.49	2.72	43977.98	1.38	1

Sample	Conc mg/L	Mean Abs
ID		
Std 1	5	0.8688
Std 2	10	1.0359
Std 3	15	1.294
SR-158	Х	0.1461

Table S3. Atomic absorption spectroscopy of Zn

 $X=0.812\ mg/L$

Table S4. ICP-OES of CN-35 and MFBBCFPC

SOPHISTICATED ANALYTICAL INSTRUMENT FACILITY IIT MADRAS, CHENNAI-36 PERKIN ELMER OPTIMA 5300 DV ICP-OES Sample code Element symbol and Concn.in ppm Wavelength (nm) ug/ml (or) mg/litre

Sample code	Wavelength (nm)	Concn.in ppm μg/ml (or) mg/litre
CN-35	Fe 238.204	0.070 mg/L
	Pd 340.458	BDL
	Ru 240.272	0.002 mg/L
	Zn 206.200	0.020 mg/L
MFBBCFPC	Fe 238.204	0.912 mg/L
	Pd 340.458	BDL
	Ru 240.272	0.013 mg/L
	Zn 206.200	0.678 mg/L