Supporting information

Magnetic cross-linked enzyme aggregates based on ionic liquid

modification as novel immobilized biocatalyst for phytosterol

esterification

Zou Bin^{a, b*}, Feng Ting^a, Yan Yan^a, Liu Feng^a, Onyinye, Adesanya Idowu^a, Suo Hongbo^c.

^a School of Food and Biological Engineering,

Jiangsu University, Zhenjiang 212013, China.

^b State Key Laboratory of Food Science and Technology,

Jiangnan University, Wuxi, 214122, China.

^c School of Pharmaceutical Sciences,

Liaocheng University, Liaocheng, 252059, China.

Content

1. Thermogravimetric analysis (TGA) of Fe₃O₄-NH₂ and CRL-FIL-CLEAs@Fe₃O₄ (Fig.

1s).

2. Reuse of different catalysts in the esterification reaction (Fig. 2s).

3. Confocal laser scanning microscopy (CLSM) images of : (a) Free lipase; (b) CRL-FIL-

 $CLEAs@Fe_{3}O_{4}; \ (c) \ CRL-FIL-CLEAs@Fe_{3}O_{4} \ (5X); \ (d) \ CRL-FIL-CLEAs \ @Fe_{3}O_{4}$

(repeated 5 times); (e) CRL-FIL-CLEAs@Fe₃O₄ (repeated 5 times, 5X) (Fig.3s).

4. Conversion data of phytosterols with CRL-FIL-CLEAs@Fe₃O₄ at different times (Table 1s).

5. Comparison of enzyme-catalyzed esterification of phytosterols and fatty acids (FA) with other reported references (**Table 2s**).

6. Secondary structures for free lipase and CRL-FIL-CLEAs@Fe₃O₄ (Table 3s).

^{*}To whom correspondence should be addressed. The postal address: Jiangsu University, No.301 Xuefu Road, Zhenjiang 212013, China. E-mail:<u>binzou2009@ujs.edu.cn</u>

1. Thermogravimetric analysis (TGA) images.

Fig. 1s Thermogravimetric analysis (TGA) of Fe₃O₄-NH₂ and CRL-FIL-CLEAs@Fe₃O₄. TGA curves of Fe₃O₄-NH₂ and CRL-FIL-CLEAs@Fe₃O₄ under nitrogen were studied (Fig.1s). The first weight loss of Fe₃O₄-NH₂ and CRL-FIL-CLEAs@Fe₃O₄ occurred at low temperatures (< 250°C) due to the evaporation of adsorbed and bound water. At 300– 800°C, part of the mass lost was attributed to the decomposition of APTES. Fe₃O₄-NH₂ magnetic nanoparticles showed excellent thermal stability, and the residual mass was about 96.4%. The second weight loss of CRL-FIL-CLEAs@Fe₃O₄ occurred after 250°C, which was due to the decomposition of lipase protein molecules. The loading of CRL was about 0.16 mg protein/mg CRL-FIL-CLEAs@Fe₃O₄.

2. Reuse of different catalysts in the esterification reaction.

Fig.2s Reuse of different catalysts in the esterification reaction.

As shown in **Fig. 2s**, the phytosterol conversion of CRL-FIL-CLEAs@Fe₃O₄ system remained at 80.02% after five cycles, while that of free lipase system was only 29.91%. The loss of immobilized lipase activity may be due to the separation of CRL-FIL-CLEAs and some Fe₃O₄ nanoparticles in a long-term repetitive experiment. Compared with the free lipase, CRL-FIL-CLEAs@Fe₃O₄ has good reusability in the biocatalytic system. Combined with the catalytic activity and thermal stability of the immobilized lipase, CRL-FIL-CLEAs@Fe₃O₄ was a catalyst with excellent performance.

3. Confocal laser scanning microscopy (CLSM) images.

Fig.3s (a) Free lipase; (b) CRL-FIL-CLEAs@Fe₃O₄; (c) CRL-FIL-CLEAs@Fe₃O₄ (5X); (d) CRL-FIL-CLEAs @Fe₃O₄ (repeated 5 times); (e) CRL-FIL-CLEAs@Fe₃O₄ (repeated 5 times, 5X).

The conformational changes of immobilized lipase before and after the reaction were observed by CLSM. As shown in **Fig. 3s(a)**, the free lipase emits green fluorescence after FITC staining. It can be observed that the aggregation morphology of lipase molecules was connected to magnetic nanoparticles before using (**Fig. 3s(b)(c)**). After repeated use five times (**Fig. 3s(d)(e)**), due to mechanical loss and other factors, it can be observed that some cross-linked enzyme aggregates fall off from magnetic nanoparticles. This explains the decrease in CRL-FIL-CLEAs@Fe₃O₄ activity after reuse.

4. Conversion of phytosterols with CRL-FIL-CLEAs@Fe₃O₄ at different times (Table 1s).

Time (h)	Conversion (%)
2	11.03
4	17.29
6	31.92
8	49.20
10	60.48
12	68.58
14	75.35
16	84.23
18	91.23
20	92.01
22	93.24

Table 1s Conversion of β -sitosterol with CRL-FIL-CLEAs@Fe₃O₄.

5. Comparison of enzyme-catalyzed esterification of phytosterols (Table 2s)

Substrate	Enzyme	Parameters ^a	Conversion	Tim e	Ref.
Phytosterols /Lauric acid	CRL	[Bmim]PF 6 /Tween20/H ₂ O, 50°C, A/P 2: 1	87.9%	24 h	54
Phytosterols /Oleic acid	CRL	n-Hexane, 30°C, A/P 5: 1	80%	24 h	55
Phytosterols /Linoleic acid	Immobilized CRL	Isooctane, 50°C, A/P 2:1	85.8%	24 h	56
Phytosterols /linolenic acid	NMC/MoS2@CRL	60% PBS, 55°C, A/P 2: 1	75%	42 h	57
Phytosterols /Oleic acid	CRL-FIL- CLEAs@Fe ₃ O ₄	Solvent-free, 48°C, A/P 10:1	93.24%	22 h	This work

Table 2s Comparison of enzyme-catalyzed esterification of phytosterols and fatty acids (FA) with other reported references.

^a: A/P: molar ratio of acids to phytosterols.

6. Secondary structures for free lipase and CRL-FIL-CLEAs@Fe₃O₄ (Table 3s)

Samples	β -sheet(%)	Random coil(%)	α -helix(%)	β -turn(%)
Free lipase	26.57±0.19	35.65±0.23	25.33±0.11	12.45±0.18
CRL-FIL-CLEAs@Fe ₃ O ₄	31.34±0.21	33.57±0.13	19.42±0.15	15.67±0.20

Table 3s Secondary structures for free lipase and CRL-FIL-CLEAs@Fe₃O_{4.}