Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information for

Constructing porous intramolecular donor-acceptor integrated carbon nitride with m-aminophenol doped for boosting photocatalytic degradation and hydrogen evolution activity

Tiantian Li^{a, d}, Jingmin Shi^{a, d}, Zhixue Liu^{a, d}, Wei Xie^{a, d}, Keyu Cui^{a, d}, Bo Hu^{a, d}, Guangbo Che^{a, b,}

^e, Liang Wang^{a, d, *}, Tianyu Zhou^{a, b, c, *}, Chunbo Liu^{a, b, c, *}

a Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University,

Changchun 130103, P.R. China

b College of Environmental Science and Engineering, Jilin Normal University, Siping 136000, P.R. China

c Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping

136000, P.R. China

d College of chemistry, Jilin Normal University, Siping 136000, P.R. China

e School of chemistry, Baicheng Normal University, Baicheng 137099, P.R. China

Contents

Materials

Characterization

- Fig. S1 Solid-state ¹³C NMR spectra in CN and CN₃₀.
- Fig. S2 SEM mapping images of CN₃₀.
- Fig. S3 N₂ adsorption-desorption isotherms and pore size distribution curves (inset) of CN and CN₃₀.
- Fig. S4 Degradation performance of CN₃₀ towards rhodamine B, methylene blue, bisphenol A.
- Fig. S5 Mass spectra of the degradation of TC over CN₃₀ sample at (a) 2.56 min, (b) 3 min, (c) 6.37 min, (d) 6.84 min, (e) 8.29 min and (f) 8.79 min.

^{*} Corresponding author: Liang Wang (wangliang7469@163.com) Tianyu Zhou (tianyuzhou@jlnu.edu.cn) Chunbo Liu (chunboliu@jlnu.edu.cn)

Materials

Urea, tetracycline (TC), m-aminophenol, aniline, phenol and triethanolamine (TEOA) were achieved from Aladdin Reagent Co., Ltd. Isopropanol (IPA), ascorbic acid (AA), EDTA-2Na and H₂PtCl₆·6H₂O were given from Sinopharm Chemical Reagent Co., Ltd. Unless otherwise specified, all reagents in the whole experiments are analytical pure reagents without treatment.

Characterization

The crystalline phase structure of the products was recorded by Rigaku (Japan) D/Max 2500 X-ray diffractometry (XRD). The fourier transform infrared spectrum (FT-IR) of the photocatalysts were obtained by thermoscientific Nicolet 4700 FT-IR spectrometer. The morphology and microstructure were observed by field emission scanning electron microscopy (FESEM, Hitachi regulus 8100) and transmission electron microscopy (TEM, JEM-2100F). The X-ray photoelectron spectroscopy (XPS) was tested by ESCALAB250XI electronic spectrometer (VG scientific, USA). Photoluminescence spectra (PL) of the products were measured by F4500 (Hitachi, Japan) PL detector. UV-vis diffuse reflectance spectrum (UV-vis DRS) was conducted on a Cary 500 spectrometer (Shimadzu UV-2550, Japan). The photocurrent response (PCR), electrochemical impedance spectroscopy (EIS) and Mott-Schottky test were performed on three-electrode system using an electrochemical workstation (Chenhua workstation CHI600E).

Fig. S1 Solid-state ¹³C NMR spectra in CN and CN₃₀.

Fig. S2 SEM mapping images of CN_{30} .

Fig. S3 N_2 adsorption-desorption isotherms and pore size distribution curves (inset) of CN and CN₃₀.

Fig. S4 Degradation performance of CN_{30} towards rhodamine B, methylene blue,

bisphenol A.

Fig. S5 Mass spectra of the degradation of TC over CN_{30} sample at (a) 2.56 min, (b) 3 min, (c) 6.37 min, (d) 6.84 min, (e) 8.29 min and (f) 8.79 min.