Supporting Information

Cobalt nanoparticles supported on microporous nitrogen-doped

carbon for efficient catalytic transfer hydrogenation reaction between

nitroarenes and N-heterocycles

Xiaomei Lu^{a,#}, Jingzhong Qin^{a,#}, Chensheng Xian^a, Jiabao Nie^a, Xun Li^a, Jie He^{a,*}, Bing Liu^{a,*}

^aKey Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan 430074, P. R. China.

[#]These authors contributed equally to this work.

*Corresponding authors. Email addresses: jiehe@scuec.edu.cn (Jie He); liubing@mail.scuec.edu.cn (Bing Liu).

1. Supporting Figures

Figure S1. TEM images of the Co/mNC-500 sample.

Figure S2. (a-c) TEM images and (d) particle size distribution of the Co/mNC-600 sample. (e) TEM image and (f) particle size distribution of the Co/mNC-400 sample.

Figure S3. XRD patterns of the Co/mNC-500 sample and standard PDF data of Co⁰, CoO, and Co₃O₄.

Figure S4. XRD patterns of Co/mNC-500 and Co/mNC-500-Air-x min.

Figure S5. Water contact angle tests for (a) Co/mNC-400, (b) Co/mNC-500, and (c) Co/mNC-600 catalysts.

Figure S6. Photographs of substrates and catalysts in (a-c) water and (d-f) MeOH.

Figure S7. Temperature and time course of the catalytic transfer hydrogenation between nitrobenzene and 1,2,3,4-tetrahydroquinoline. Conditions: nitrobenzene (0.4 mmol), 1,2,3,4-tetrahydroquinoline (0.6 mmol), catalyst (20 mg), solvent (10 mL), N_2 (1 Mpa), 24 h.

Figure S8. Recycled tests for the Co/mNC-500 catalyst. Conditions: nitrobenzene (0.4 mmol), 1,2,3,4-tetrahydroquinoline (0.6 mmol), catalyst (20 mg), solvent (10 mL), N_2 (1 Mpa), 8 h.

Figure S9. Conditions: nitrobenzene (0.4 mmol), 2-ethyl-1,2,3,4-tetrahydroquinoline (0.6 mmol), catalyst (20 mg), solvent (10 mL), N₂ (1 Mpa), 160 °C, 8 h.

Figure S10. GC-MS spectrum of the intermediate generated from the catalytic transfer hydrogenation between nitrobenzene and 1,2,3,4-tetrahydroisoquinoline.

2. Supporting Tables

Catalyst	C (wt%)	N (wt%)	0 (wt%)	Co ^a (wt%)	Co ^b (wt%)	Co ^c (wt%)
Co/mNC-400	71.45	5.16	17.14	6.09	11.30	12.40
Co/mNC-500	76.84	4.67	10.22	8.27	14.08	13.62
Co/mNC-600	77.78	3.36	9.10	9.75	21.06	15.60

Table S1. Elemental analysis of Co/mNC-400, Co/mNC-500, and Co/mNC-600.^a

^a Elemental analysis by XPS.

^b Elemental analysis by ICP-AES.
^c Theoretical composition calculated from the recipe.

Catalyst	S _{BET} (m²/g)	Pore Volume (cm ³ /g)	Pore Size (nm)
Co/mNC-500	532.93	0.48	3.62
Co/mNC-600	616.89	0.65	0.52

 Table S2. Pore structure of Co/mNC-500 and Co/mNC-600.

A	$\begin{array}{c} NO_2 \\ + \\ B \\ B \\ \end{array} \begin{array}{c} N_2 \\ \hline \\ catalyst \\ B \\ \end{array} \end{array}$	NH ₂ +) + 2H ₂ O N
Entry	Catalyst	Yield of a (%)	Yield of b (%)
1	Co/mNC-500	36	43
2	Co ₃ O ₄ /mNC-Air-30 min	34	39
3	Co ₃ O ₄ /mNC-Air-60 min	26	31
4	Co ₃ O ₄ /mNC-Air-120 min	20	20
5	Co ₃ O ₄ /mNC-Air-585 min	0	0

Table S3. Control experiment of the catalytic transfer hydrogenation between nitrobenzene and 1,2,3,4-tetrahydroquinoline.

Reaction conditions: nitrobenzene (0.4 mmol), 1,2,3,4-tetrahydroquinoline (0.6 mmol), Catalyst (20 mg), H₂O (10 mL), N₂ (1 Mpa), 4 h, 160 °C.

Catalyst	Co (at.%)	Co ⁰ (at.%)	Co ⁰ 2p _{3/2} (at.%)	Co ⁰ 2p _{1/2} (at.%)
Co/mNC-400	1.37	0.64	0.49	0.15
Co/mNC-500	1.87	1.07	0.82	0.25
Co/mNC-600	2.22	0.88	0.61	0.27

Table S4. Analysis on the content of Co⁰ species based on XPS data.^a

A = B = A =						
Entry	Solvent	Con. of A (%)	Con. of B (%)	Yield of a (%)	Yield of b (%)	
1	H_2O	36	44	36	43	
2	CH ₃ OH	19	12	19	12	
3	CH ₃ CH ₂ OH	9	6	9	6	
4	Toluene	9	6	5	6	
5	THF	7	6	6	6	
6	CH ₃ CN	7	18	7	18	
7	DMF	8	9	8	9	

Table S5. Optimization of solvent for catalytic transfer hydrogenation between nitrobenzene and 1,2,3,4-tetrahydroquinoline.^a

^aReaction conditions: nitrobenzene (0.4 mmol), 1,2,3,4-tetrahydroquinoline (0.6 mmol), Co/mNC-500 (20 mg), solvent (10 mL), N₂ (1 Mpa), 160 °C, 4 h.

$ \begin{array}{c} & & NO_2 \\ \hline & & H \\ \hline & & Catalyst \\ \hline & & A \\ \hline & & B \\ \hline & & a \\ \hline & & b \\ \hline & & b \\ \end{array} $					
Entry	Temperature (°C)	Con. of A (%)	Con. of B (%)	Yield of a (%)	Yield of b (%)
1	120	9	36	9	36
2	130	65	68	65	68
3	140	71	70	70	70
4	150	75	87	75	85
5	160	91	96	91	96

Table S6. Activity data of catalytic transfer hydrogenation between nitrobenzene and 1,2,3,4-tetrahydroquinoline at different temperatures.^a

^aReaction conditions: nitrobenzene (0.4 mmol), 1,2,3,4-tetrahydroquinoline (0.6 mmol), Co/mNC-500 (20 mg), H_2O (10 mL), N_2 (1 Mpa), 24 h.

$ \begin{array}{c} & & NO_2 \\ H \\ A \\ \end{array} \\ \begin{array}{c} & & N_2 \\ H \\ H \\ \end{array} \\ \begin{array}{c} & & N_2 \\ \hline & & Catalyst \\ \end{array} \\ \begin{array}{c} & & NH_2 \\ \hline & & NH_2 \\ \end{array} \\ \begin{array}{c} & & & H \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & & H \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & & H \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg \\ \end{array} \\ \end{array} \\ \bigg \\ \\ \end{array} \\ \end{array} \\ \bigg \\ \\ \end{array} \\ \bigg \\ \bigg \\ \end{array} \\ \bigg \\ \bigg						
Entry	Time (h)	Con. of A (%)	Con. of B (%)	Yield of a (%)	Yield of b (%)	
1	0.5	15	16	15	16	
2	1	19	20	19	20	
3	2	30	32	30	32	
4	4	36	44	36	43	
5	8	62	63	62	63	
6	16	83	83	78	81	
7	24	91	96	91	96	

Table S7. Activity data of catalytic transfer hydrogenation between nitrobenzene and 1,2,3,4-tetrahydroquinoline over reaction time.^a

^aReaction conditions: nitrobenzene (0.4 mmol), 1,2,3,4-tetrahydroquinoline (0.6 mmol), Co/mNC-500 (20 mg), H₂O (10 mL), N₂ (1 Mpa), 160 °C.

Entry	Substrate	Product	Atomsphere	Y(a) (%)	Y(b) (%)
1	NO ₂	NH ₂	H ₂	95	95
2			N_2	11	11

Table S8. The results of reduction of nitrobenzene and dehydrogenation of 1,2,3,4-tetrahydroquinoline^a

^a Reaction conditions: 0.4 mmol of nitrobenzene, 0.6mmol 1,2,3,4-tetrahydroquinoline, Co/mNC catalyst (20 mg), 160 °C, 24 h, solvent (10 mL);

	H = H = H = H $H = H$ H $H = H$ H $H = H$ H H H H H H H H H	NH ₂ +) + 2H₂O
Entry	Catalyst	Yield of a (%)	Yield of b (%)
1 ^a	Co/mNC-500 (Catalyst in this work)	91	96
2 ^b	Co-N-C-900 (Catalyst in Ref S1)	99	98
3 ^b	Co/mNC-500	100	96
4°	Ni@NCF-700 (50.13wt%) (Catalyst in Ref S2)	97	96
5°	Co/mNC-500	71	65

Table S9. catalytic transfer hydrogenation performance between nitrobenzene and 1,2,3,4-tetrahydroquinoline in this work and previous studies.

^aOptimized conditions in this work: nitrobenzene (0.4 mmol), 1,2,3,4-tetrahydroquinoline (0.6 mmol), Co/mNC-500 (20 mg), H₂O (10 mL), N₂ (1 Mpa), 24 h, 160 °C;

^bConditions in Ref. S1: nitrobenzene (0.125 mmol), 1,2,3,4-tetrahydroquinoline (0.188 mmol), Co/mNC-500 (50 mg), H₂O (2 mL), N₂ (1 Mpa), 24 h, 145 °C;

°Conditions in Ref. S2: nitrobenzene (0.5 mmol), 1,2,3,4-tetrahydroquinoline (0.75 mmol), Co/mNC-500 (50 mg), H₂O (2 mL), N₂ (1 Mpa) , 24 h, 145 °C.

Refer

[S1] D. Xu, R. R. Liu, J. F. Li, H. C. Zhao, J. T. Ma, Z. P. Dong, *Appl. Catal. B*, 2021, 299, 120681.

[S2] S. F. Pang, Y. J. Zhang, Q. Su, F. F. Liu, X. Xie, Z. Y. Duan, F. Zhou, P. Zhang, ;
 Y. B. Wang, *Green Chem.*, 2020, 22, 1996.

3. Supporting Mass Spectrometry

3c: 3-Toluidine

3e: 4-Ethylaniline

3g: 1,4-Benzenediamine

3i: 4-Fluoroaniline

3k: 3-Chloroaniline

3l: 2-Chloroaniline

3m: 4-Bromoaniline

30:4-Aminobenzonitrile

3q: 2-Aminoacetophenone

3s: 1-aminonaphthalene

4a: quinoline

4b: 6-Methylquinoline

4c: 6-Methoxyquinoline

4e: Quinoxaline

4g: 5-Bromoisoquinoline

4i: 1-Phenylisoquinoline

(Text File) Injection ID=c21a2f1295fb4214bec4324a917b7891 Scan=5375 Scan Type=+ c EI Full ms [50.00-300.00

