Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information

for

Zinc 8-aminotrihydroquinolines appended with pendant *N*-diphenylphosphinoethyl arms as exceptionally active catalysts for the ROP of ε-CL

Furong Cao,^{a,b} Yun Wang,^{a,b} Xing Wang,^{a,b} Wenjuan Zhang,^{a,*} Gregory A. Solan,^{c,*} Rui

Wang ^a, Yanping Ma,^b Xiang Hao,^b Wen-Hua Sun^{b,*}

^a Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China. E-mail: zhangwj@bift.edu.cn.

^b Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn

^c Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk.

Table of Contents				
1.	$^{1}H/^{13}C/^{31}P$ NMR spectra of L1 - L6 (Figures S1 – S17)	S2-S10		
2.	$^{1}H/^{13}C/^{31}P$ NMR spectra of Zn1 – Zn7 (Figures S18 – S37)	S11 - S20		
3	Table SI-1 Comparison of the ³¹ P NMR chemical shifts for L1 - L5 with			
	those in Zn1 - Zn5			
4.	Table SI-2 Ring opening polymerization of <i>rac</i> -LA and ε-CL using Zn7	S21		
5.	¹ H and ³¹ P NMR spectra of $Zn1 + 2LiCH_2SiMe_3$ (Figure S38)	S22		
6.	¹ H NMR spectra of $Zn1 + 2LiN(SiMe_3)_2$ (Figure S39)	S22		
7	¹ H NMR spectra of the PCLs obtained using $Zn1/2LiN(SiMe_3)_2$ ([Zn]) with	S23, S24		
	different quenching solvents (Figures S40 - S42)			
8	¹ H NMR and MALDI-TOF spectra for the PCL produced with	S24, S25		
	Zn1/2LiN(SiMe ₃) ₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 4000:1:1			
	(run 14, Table 3 & Figure S43)			
9	¹ H NMR and MALDI-TOF mass spectra for the PCL produced with	S25, S26		
	Zn1/2LiN(SiMe ₃) ₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 5000:1:1			
	(run 15, Table 3 & Figure S44)			

Figure S1(a) ¹H NMR spectrum of L1; recorded in CDCl₃ at 25 °C

Figure S1(b) ¹H NMR spectrum of L1; recorded in C₃D₇NO at 25 °C

Figure S2 ¹³C NMR spectrum of L1; recorded in CDCl₃ at 25 °C

Figure S3 (a) ³¹P NMR spectrum of L1; recorded in CDCl₃ at 25 °C

Figure S3(b) ³¹P NMR spectrum of L1; recorded in C₃D₇NO at 25 °C

Figure S4(a) ¹H NMR spectrum of L2; recorded in CDCl₃ at 25 °C

Figure S4 (b) ¹H NMR spectrum of L2; recorded in C₃D₇NO at 25 °C

Figure S5 ¹³C NMR spectrum of L2; recorded in CDCl₃ at 25 °C

Figure S6 (a) 31 P NMR spectrum of L2; recorded in CDCl₃ at 25 °C

Figure S6 (b) 31 P NMR spectrum of L2; recorded in C₃D₇NO at 25 °C

Figure S7(a) ¹H NMR spectrum of L3; recorded in CDCl₃ at 25 °C

Figure S7 (b) ¹H NMR spectrum of L3; recorded in C₃D₇NO at 25 °C

Figure S8 ¹³C NMR spectrum of L3; recorded in CDCl₃ at 25 °C

Figure S9(a) ³¹P NMR spectrum of L3; recorded in CDCl₃ at 25 °C

Figure S9 (b) 31 P NMR spectrum of L3; recorded in C₃D₇NO at 25 °C

Figure S10(a) ¹H NMR spectrum of L4; recorded in CDCl₃ at 25 °C

Figure S10 (b) ¹H NMR spectrum of L4; recorded in C₃D₇NO at 25 °C

Figure S11 ¹³C NMR spectrum of L4; recorded in CDCl₃ at 25 °C

Figure S12(a) ³¹P NMR spectrum of L4; recorded in CDCl₃ at 25 °C

Figure S12 (b) 31 P NMR spectrum of L4; recorded in C₃D₇NO at 25 °C

Figure S13(a) ¹H NMR spectrum of L5; recorded in CDCl₃ at 25 °C

Figure S13 (b) ¹H NMR spectrum of L5; recorded in C₃D₇NO at 25 °C

Figure S14 ¹³C NMR spectrum of L5; recorded in CDCl₃ at 25 °C

Figure S15(a) ³¹P NMR spectrum of L5; recorded in CDCl₃ at 25 °C

Figure S15 (b) 31 P NMR spectrum of L5; recorded in C₃D₇NO at 25 °C

Figure S16 ¹H NMR spectrum of L6; recorded in CDCl₃ at 25 °C

Figure S17 ¹³C NMR spectrum of L6; recorded in CDCl₃ at 25 °C

2. ¹H/¹³C/³¹P NMR spectra of Zn1 – Zn7 (Figures S18 – S37)

Figure S18 ¹H NMR spectrum of Zn1; recorded in C₃D₇NO at 25 °C

Figure S19 ¹³C NMR spectrum of Zn1; recorded in C₃D₇NO at 25 °C

Figure S20 ³¹P NMR spectrum of Zn1; recorded in C₃D₇NO at 25 °C

Figure S21 ¹H NMR spectrum of Zn2; recorded in C₃D₇NO at 25 °C

Figure S22 ¹³C NMR spectrum of Zn2; recorded in C₃D₇NO at 25 °C

Figure S23 ³¹P NMR spectrum of Zn2; recorded in C₃D₇NO at 25 °C

Figure S24 ¹H NMR spectrum of Zn3; recorded in C₃D₇NO at 25 °C

Figure S25 ¹³C NMR spectrum of Zn3; recorded in C₃D₇NO at 25 °C

Figure S26 ³¹P NMR spectrum of Zn3; recorded in C₃D₇NO at 25 °C

Figure S27 ¹H NMR spectrum of Zn4; recorded in C₃D₇NO at 25 °C

Figure S28 ¹³C NMR spectrum of Zn4; recorded in C₃D₇NO at 25 °C

Figure S29 ³¹P NMR spectrum of Zn4; recorded in C₃D₇NO at 25 °C

Figure S30 ¹H NMR spectrum of Zn5; recorded in C₃D₇NO at 25 °C

Figure S31 ¹³C NMR spectrum of Zn5; recorded in C₃D₇NO at 25 °C

Figure S32 ³¹P NMR spectrum of Zn5; recorded in C₃D₇NO at 25 °C

Figure S33 ¹H NMR spectrum of Zn6; recorded in C₃D₇NO at 25 °C

Figure S34 ¹³C NMR spectrum of Zn6; recorded in C₃D₇NO at 25 °C

Figure S35 ¹H NMR spectrum of Zn7; recorded in C₆D₆ at 25 °C

Figure S36 13 C NMR spectrum of Zn7; recorded in C₆D₆ at 25 °C

Figure S37 31 P NMR spectrum of Zn7; recorded in C₆D₆ at 25 °C

Compound	³¹ P NMR	³¹ P NMR ³¹ P NMR Complex		³¹ P NMR chemical	
	chemical shift	chemical shift		shift (ppm, in d_7 -	
	(ppm, in CDCl ₃)	(ppm, in d_7 -DMF)		DMF)	
L1 (H)	-20.74	-20.55	Zn1	-21.62	
L2 (Me)	-20.55	-20.22	Zn2	-20.88	
L3 (iPr)	-20.92	-20.53	Zn3	-17.34	
L4 (Cl)	-19.71	-20.36	Zn4	-17.38	
L5 (Ph)	-19.87	-20.59	Zn5	-17.25	

3. Table SI-1 Comparison of the ³¹P NMR chemical shifts for L1 - L5 with those in Zn1 - Zn5

Table SI-2 Ring opening polymerization of rac-LA and ϵ -CL using Zn7 a

Entry	Monomer	[monomer]/[Zn]	t	Т	Conv.
			(min)	(°C)	(%) ^b
1	rac-LA	250:1	30	50	99
2	rac-LA	500:1	30	50	98
3	rac-LA	1000:1	30	50	93
4	ε-CL	1000:1	120	50	0

Conditions: 10 µmol zinc procatalyst 1.0 mL toluene; ^b Determined by ¹H NMR spectroscopy.

5. ¹H and ³¹P NMR spectra of Zn1 + 2LiCH₂SiMe₃ (Figure S38)

Figure S38a Stacked ¹H NMR spectra of LiCH₂SiMe₃ (top), **Zn1**+2LiCH₂SiMe₃ after 0 minutes (middle) and **Zn1**+2LiCH₂SiMe₃ after 30 minutes (bottom); all spectra recorded in C₆D₆ at 25 °C

Figure S38b Stacked ³¹P NMR spectra of **Zn1** (top), **Zn1**+2LiCH₂SiMe₃ after 0 minutes (middle) and **Zn1**+2LiCH₂SiMe₃ after 30 minutes (bottom); all spectra recorded in C₆D₆ at 25 °C

6. ¹H NMR spectra of Zn1 + 2LiN(SiMe₃)₂ (Figure S39)

Figure S39 Stacked ¹H NMR spectra of **Zn1** + LiN(SiMe₃)₂ after 30 minutes (top, in C₆D₆ at 25 °C), LiN(SiMe₃)₂ (middle, in C₆D₆ at 25 °C) and **Zn1** (bottom, in C₃D₇NO at 25 °C)

7. ¹H NMR spectra of the PCLs obtained using Zn1/2LiN(SiMe₃)₂ ([Zn]) with different quenching solvents (Figures S40 - S42)

Figure S40 ¹H NMR spectrum of the PCL (run 6, Table 3) generated using $Zn1/2LiN(SiMe_3)_2$ ([Zn]) following quenching with *n*-butanol; recorded in CDCl₃ at 25 °C

Figure S41 ¹H NMR spectrum of the PCL (run 6, Table 3) generated using $Zn1/2LiN(SiMe_3)_2$ ([Zn]) following quenching with methanol; recorded in CDCl₃ at 25 °C

Figure S42 ¹H NMR spectrum of the PCL (run 6, Table 3) generated using **Zn1**/2LiN(SiMe₃)₂ ([Zn]) following quenching with *iso*-propanol; recorded in CDCl₃ at 25 °C

8. ¹H NMR and MALDI-TOF spectra for the PCL produced with Zn1/2LiN(SiMe₃)₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 4000:1:1 (run 14, Table 3 & Figure S43)

Figure S43a ¹H NMR spectrum of the PCL generated with **Zn1**/2LiN(SiMe₃)₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 4000:1:1 (run 14, Table 3); recorded in CDCl₃, 25 °C.

Figure S43b MALDI-TOF mass spectrum of the PCL generated with **Zn1**/2LiN(SiMe₃)₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 4000:1:1 (run 14, Table 3).

9. ¹H NMR and MALDI-TOF spectra for the PCL produced with Zn1/2LiN(SiMe₃)₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 5000:1:1 (run 15, Table 3 & Figure S44)

Figure S44a ¹H NMR spectrum of the PCL generated with **Zn1**/2LiN(SiMe₃)₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 5000:1:1 (run 15, Table 3); recorded in CDCl₃, 25 °C.

Figure S44b MALDI-TOF mass spectrum of the PCL generated with **Zn1**/2LiN(SiMe₃)₂ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 5000:1:1 (run 15, Table 3).