Supporting information

for

Zinc 8-aminotrihydroquinolines appended with pendant \boldsymbol{N}-diphenylphosphinoethyl arms as exceptionally active catalysts for the ROP of $\boldsymbol{\varepsilon}$-CL

 Wang ${ }^{\text {a }}$, Yanping Ma, ${ }^{\text {b }}$ Xiang Hao, ${ }^{\text {b }}$ Wen-Hua Sun ${ }^{\text {b,* }}$

${ }^{\text {a }}$ Beijing Key Laboratory of Clothing Materials R\&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China. E-mail: zhangwj@bift.edu.cn.
${ }^{\mathrm{b}}$ Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn
${ }^{c}$ Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, UK. E-mail: gas8@leicester.ac.uk.

	Table of Contents	Pages
1.	${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{31} \mathrm{P}$ NMR spectra of L1-L6 (Figures S1-S17)	S2-S10
2.	${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{Z n} 1-\mathbf{Z n} 7$ (Figures S18-S37)	S11-S20
3	Table SI-1 Comparison of the ${ }^{31} \mathrm{P}$ NMR chemical shifts for $\mathbf{L 1}$ - $\mathbf{L} 5$ with those in $\mathbf{Z n} \mathbf{1 -} \mathbf{Z n 5}$	S21
4.	Table SI-2 Ring opening polymerization of rac-LA and ε-CL using $\mathbf{Z n} 7$	S21
5.	${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{Z n 1}+2 \mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ (Figure S38)	S22
6.	${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{Z n \mathbf { n }}+2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}($ Figure S39)	S22
7	${ }^{1} \mathrm{H}$ NMR spectra of the PCLs obtained using $\mathbf{Z n} \mathbf{1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}([\mathrm{Zn}])$ with different quenching solvents (Figures S40-S42)	S23, S24
8	${ }^{1} \mathrm{H}$ NMR and MALDI-TOF spectra for the PCL produced with $\mathbf{Z n 1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}([\mathrm{Zn}])$ using a CL:[Zn]:BnOH molar ratio of 4000:1:1 (run 14, Table 3 \& Figure S43)	S24, S25
9	${ }^{1} \mathrm{H}$ NMR and MALDI-TOF mass spectra for the PCL produced with $\mathbf{Z n 1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}([\mathrm{Zn}])$ using a CL:[Zn]:BnOH molar ratio of 5000:1:1 (run 15, Table 3 \& Figure S44)	S25, S26

1. ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{31} \mathrm{P}$ NMR spectra of L1-L6 (Figures S1-S17)

Figure $\mathbf{S 1}(\mathbf{a}){ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} 1$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 1}(\mathbf{b}){ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L} 1$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 2}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L} \mathbf{1}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S3 (a) ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L} \mathbf{1}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 3}(b){ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 1}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 4}(\mathbf{a}){ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 2}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 4}$ (b) ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 2}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

ị

$\begin{array}{llllllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & \begin{array}{c}80 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

Figure $\mathbf{S 5}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 2}$; recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$

Figure S6 (a) ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 2}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 6}(\mathbf{b}){ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 2}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25{ }^{\circ} \mathrm{C}$

Figure $\mathbf{S 7}(\mathbf{a}){ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 3}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 7}$ (b) ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 3}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 8}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 3}$; recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$

Figure $\mathbf{S 9}(\mathbf{a}){ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 3}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 9}$ (b) ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 3}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25{ }^{\circ} \mathrm{C}$

Figure $\mathbf{S 1 0 (a)}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 4}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S10 (b) ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 4}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 1 1}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 4}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 1 2 (a)}{ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 4}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 1 2}$ (b) ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 4}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S13(a) ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 5}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S13 (b) ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 5}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S14 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 5}$; recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$

Figure S15(a) ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 5}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S15 (b) ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{L 5}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 1 6}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{L 6}$; recorded in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$

Figure $\mathbf{S 1 7}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{L 6}$; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

2. ${ }^{\mathbf{1}} \mathbf{H} /{ }^{13} \mathbf{C} /{ }^{\mathbf{3 1}} \mathbf{P}$ NMR spectra of $\mathrm{Zn} 1-\mathrm{Zn} 7($ Figures $\mathrm{S} 18-\mathrm{S} 37)$

Figure $\mathbf{S 1 8}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n} \mathbf{1}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S19 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n} 1$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 2 0}{ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{Z n} \mathbf{1}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S21 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n 2}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 2 2}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n 2}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25{ }^{\circ} \mathrm{C}$
$\stackrel{\infty}{\infty}$

\qquad
60

Figure $\mathbf{S 2 3}{ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{Z n} \mathbf{2}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S24 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n 3}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25{ }^{\circ} \mathrm{C}$

Figure $\mathbf{S 2 5}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n} 3$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25{ }^{\circ} \mathrm{C}$

Figure $\mathbf{S 2 6}{ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{Z n 3}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S27 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n 4}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 2 8}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n 4}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S29 ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{Z n 4}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S30 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n 5}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 3 1}{ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n 5}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 3 2}{ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{Z n 5}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 3 3}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n 6}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure S34 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n 6}$; recorded in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$

Figure $\mathbf{S 3 5}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{Z n} 7$; recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25{ }^{\circ} \mathrm{C}$

Figure S36 ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{Z n} 7$; recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25{ }^{\circ} \mathrm{C}$

Figure $\mathbf{S 3 7}{ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{Z n} 7$; recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25^{\circ} \mathrm{C}$
3. Table SI-1 Comparison of the ${ }^{31} \mathrm{P}$ NMR chemical shifts for $\mathbf{L} 1$ - $\mathbf{L 5}$ with those in

Compound	${ }^{31} \mathrm{P}$ NMR chemical shift (ppm, in CDCl_{3})	${ }^{31} \mathrm{P}$ NMR chemical shift (ppm, in d_{7}-DMF)	Complex	${ }^{31} \mathrm{P}$ NMR chemical shift (ppm , in $d_{7^{-}}$ DMF)
L1 (H)	-20.74	-20.55	Zn1	-21.62
L2 (Me)	-20.55	-20.22	Zn2	-20.88
L3 (iPr)	-20.92	-20.53	Zn3	-17.34
$\mathbf{L 4}$ (Cl)	-19.71	-20.36	Zn4	-17.38
L5 (Ph)	-19.87	-20.59	Zn5	-17.25

Table SI-2 Ring opening polymerization of rac -LA and ε-CL using $\mathbf{Z n} 7{ }^{\text {a }}$

Entry	Monomer	[monomer]/[Zn]	t (min)	T $\left({ }^{\circ} \mathrm{C}\right)$	Conv. $(\%)^{\mathrm{b}}$
1	rac-LA	$250: 1$	30	50	99
2	$r a c$-LA	$500: 1$	30	50	98
3	$r a c-L A$	$1000: 1$	30	50	93
4	$\varepsilon-C L$	$1000: 1$	120	50	0

Conditions: $10 \mu \mathrm{~mol}$ zinc procatalyst 1.0 mL toluene; ${ }^{b}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

5. ${ }^{1} \mathrm{H}$ and ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR spectra of $\mathbf{Z n} 1+2 \mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ (Figure $\mathbf{~ S 3 8) ~}$

Figure S38a Stacked ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{LiCH}_{2} \mathrm{SiMe}_{3}($ top $), \mathbf{Z n} \mathbf{1}+2 \mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ after 0 minutes (middle) and $\mathbf{Z n 1}+2 \mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ after 30 minutes (bottom); all spectra recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25{ }^{\circ} \mathrm{C}$

Figure S38b Stacked ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{Z n 1}$ (top), $\mathbf{Z n} \mathbf{1}+2 \mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ after 0 minutes (middle) and $\mathbf{Z n 1}+2 \mathrm{LiCH}_{2} \mathrm{SiMe}_{3}$ after 30 minutes (bottom); all spectra recorded in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25{ }^{\circ} \mathrm{C}$
6. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Zn} 1+2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ (Figure $\mathbf{S 3 9)}$

Figure S39 Stacked ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{Z n} \mathbf{1}+\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ after 30 minutes (top, in $\mathrm{C}_{6} \mathrm{D}_{6}$ at 25 $\left.{ }^{\circ} \mathrm{C}\right), \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\right.$ middle, in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25^{\circ} \mathrm{C}$) and $\mathbf{Z n 1}$ (bottom, in $\mathrm{C}_{3} \mathrm{D}_{7} \mathrm{NO}$ at $25^{\circ} \mathrm{C}$)
7. ${ }^{1} \mathrm{H}$ NMR spectra of the PCLs obtained using $\mathrm{Zn} 1 / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) with different quenching solvents (Figures S40-S42)

Figure $\mathbf{S 4 0}{ }^{1} \mathrm{H}$ NMR spectrum of the PCL (run 6, Table 3) generated using $\mathbf{Z n} \mathbf{1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) following quenching with n-butanol; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S41 ${ }^{1} \mathrm{H}$ NMR spectrum of the PCL (run 6, Table 3) generated using $\mathbf{Z n} \mathbf{1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) following quenching with methanol; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$

Figure S42 ${ }^{1} \mathrm{H}$ NMR spectrum of the PCL (run 6, Table 3) generated using $\mathbf{Z n} \mathbf{1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) following quenching with iso-propanol; recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$
8. ${ }^{1} \mathrm{H}$ NMR and MALDI-TOF spectra for the PCL produced with $\mathbf{Z n} 1 / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 4000:1:1 (run 14, Table 3 \& Figure S43)

Figure S43a ${ }^{1} \mathrm{H}$ NMR spectrum of the PCL generated with $\mathbf{Z n 1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 4000:1:1 (run 14, Table 3); recorded in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$.

Figure S43b MALDI-TOF mass spectrum of the PCL generated with $\mathbf{Z n} 1 / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}([\mathrm{Zn}])$ using a CL:[Zn]:BnOH molar ratio of 4000:1:1 (run 14, Table 3).
9. ${ }^{1} \mathrm{H}$ NMR and MALDI-TOF spectra for the PCL produced with $\mathbf{Z n} 1 / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 5000:1:1 (run 15, Table 3 \& Figure S44)

Figure S44a ${ }^{1} \mathrm{H}$ NMR spectrum of the PCL generated with $\mathbf{Z n 1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ([Zn]) using a CL:[Zn]:BnOH molar ratio of 5000:1:1 (run 15, Table 3); recorded in $\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$.

Figure S44b MALDI-TOF mass spectrum of the PCL generated with $\mathbf{Z n 1} / 2 \mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ($[\mathrm{Zn}]$) using a CL:[Zn]:BnOH molar ratio of 5000:1:1 (run 15, Table 3).

