Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Zinc ferrite-graphitic carbon nitride nanohybrid for photo-catalysis of ciprofloxacin antibiotic

Sandhya Mishra^{a,b}, Korutla Srikanth^c, T. Rajagopala Rao^c, Prashant Kumar^{d, e*}and Sujoy Kumar Samanta^{a, *}

^aDepartment of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar, India-801106.

^bDepartment of Chemical Engineering, Shree Dhanvantary College of Engineering and Technology, Kim (E), Surat Gujarat, India-394110.

^cDepartment of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, India-801106.

^dDepartment of Physics, Indian Institute of Technology Patna, Bihta, Patna, Bihar, India-801106.

^cGlobal Innovative Centre for Advanced Nanomaterials, University of Newcastle, University Drive, Callaghan NSW 2308, Australia.

Correspondence: Dr. Prashant Kumar: Phone: 0421-639-160, +91-9102830953, Email: prashant.kumar@newcastle.edu.au, magmemory@gmail.com; Dr. Sujoy Kumar Samanta: Phone: +91-6115-233-173, +91-9835355046, E-mail: sksamanta@iitp.ac.in, sksamanta21@gmail.com.

Fig. S1 SEM- EDS of ZFCN hybrid catalyst.

Fig. S2 XRD pattern of ZFCN (black), ZFO (blue) and GCN (red) catalyst.

Fig. S3 DRS plot of GCN, ZFO and ZFCN as per their weight %.

Fig. S4 Effect of weight % on the degradation of CIP.

Fig. S5 M–H hysteresis loop for ZFCN sheets at room temperature.

Fig. S6 FTIR spectrum of ZFCN according to their weight % ratio.

Fig. S7 FTIR spectrum of ZFO, GCN, ZFCN, CIP and after degradation of the catalyst.

Fig. S8 Proposed pathway of CIP degradation.

Fig. S9 (a)

Fig. S9 (b)

Fig. S9 (c)

Fig. S9 (d)

Fig. S9 (e)

Fig. S9 (f)

Fig. S9 (g)

Fig. S9 (h)

Fig. S9 (i)

Fig. S9 Mass spectra for intermediates are shown for (a-i) at various time points during the degradation of ciprofloxacin.

Number	Formula	RT (min)	m/z	Proposed
				structure
CIP	$C_{17}H_{18}FN_3O_3$	3.31	332	
P1	$C_{17}H_{16}FN_3O_5$	4.46	362	
P2	$C_{17}H_{16}FN_3O_4$	4.73	346	
Ρ3	$C_{17}H_{17}N_3O_5$	3.57	344	
P4	$C_{16}H_{17}N_{3}O_{4}$	4.70	316	
Ρ5	$C_{17}H_{19}N_3O_4$	4.34	330	
P6	$C_{16}H_{19}N_3O_3$	4.02	302	
P7	$C_{13}H_{10}N_2O_5$	4.41	274	
P8	C ₁₆ H ₁₈ FN ₃ O	4.49	288	

Table S1- The possible intermediates of CIP degradation in the ZFCN/UV system

Fig. S10 Kinetic fitting of TOC of CIP degradation

Fig. S11 Electrochemical study of GCN, ZFCN and ZFO (a) cyclic voltammetry, (b) Nyquist plot and (c) Mott-schottky plot.

Fig. S12 Band structure of GCN, ZFCN and ZFO.

Samples	BET Surface Area (m ² g ⁻¹)
GCN	24.80
ZFO	6.06
ZFCN	12.90

Table S2 BET surface area of the catalyst.

Method/Catalyst	рН	Initial Concentratio n	Degradati on efficiency (%)	References
Ozonation	5	20 mg/L	90	Hassani et al., 2016
Ionization Radiation	4.8	10 mg/L	70	Tegze et al., 2019
Photocatalysis (TiO ₂)	5.6	10 mg/L	89.62	Verma et al. 2017
Solar Light (TiO ₂ /Ti)	6.3	10 mg/L	88.86	Sayed et al., 2018
Ferrate/ Persulfate	4	30 mg/L	91.5	Li et al., 2019
Electro-chemical	4.5	20 mg/L	84	Matzek et al., 2018
Membrane	8.63	50 mg/L	90	Vinu et al., 2010
Photocatalysis	5	10 mg/L	95	Present Work

Table S3. Comparisons between the present method's degradation efficiency and that of other methods for the degradation of the CIP that have been published in the literature.

Fig. S13 Optimized structure of GCN sheet (Left: side view, Right: front view).

Fig. S14 Optimized structure of ciprofloxacin molecule.