Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

## Supporting information

## Homoleptic phenoxy-imine pyridine zinc complexes: efficient and recyclable catalysts for synthesis and depolymerization of polyesters.

Sara D'Aniello,<sup>1</sup> Sidonie Lavielle, <sup>2</sup> Malaury Simon, <sup>2</sup> Michele Sellitto, <sup>1</sup> Federica Santulli, <sup>1</sup> Consiglia Tedesco, <sup>1</sup> Christophe Thomas,<sup>2</sup>\* Mina Mazzeo. <sup>1\*</sup>

| <b>Figure S1-S6.</b> <sup>1</sup> H NMR spectra (600 MHz, C <sub>6</sub> D <sub>6</sub> , 298 K) ligands L1H-L6H.   | pag 2-4   |
|---------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Figure S7-S12.</b> <sup>13</sup> C NMR spectra (150 MHz, C <sub>6</sub> D <sub>6</sub> , 298 K) ligands L1H-L6H. | pag 5-7   |
| Figure S13-S18. <sup>1</sup> H NMR spectra of complexes 1-6.                                                        | pag 8-10  |
| Table S1 and Figure S19-22.         Crystallographic details and crystal packing.                                   | pag 11-13 |
| Table S2.         Thermal analysis of complexes 1-5                                                                 | pag 14    |
| Figure S23. TGA of complex 1                                                                                        | pag14.    |
| Figure S24. 1H NMR spectra after the stability test.                                                                | pag 15    |
| Figure S25. Kinetic plots for ROP of L-LA promoted by Zn catalysts 5 and 6                                          | pag 15    |
| Table S3 and S4.         Polymerization data                                                                        | pag 16    |
| Figure S26. Kinetic experiment with complex 5.                                                                      | pag 17    |
| Figure S27. MALDI TOF spectrum of a PLA sample                                                                      | pag 17    |
| Figure S28. <sup>1</sup> H NMR spectrum of a degradation reaction of PLLA (entry 1 of Table 6).                     | pag 28    |
| Figures S29- S31. <sup>1</sup> H NMR spectra related to catalyst recycling experiment                               | pag 19-20 |
| Figure S32. <sup>1</sup> H NMR spectrum of complex 2 after heating with ethylene glycol.                            | pag 21    |
| Figure S33. <sup>1</sup> H NMR spectra of comparison                                                                | pag 21    |



Figure S1. <sup>1</sup>H NMR spectrum (600 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) ligand L1H.



Figure S2. <sup>1</sup>H NMR spectrum (600 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K)ligand L2H.



Figure S3. <sup>1</sup>H NMR spectrum (600 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K)ligand L3H.



Figure S4. <sup>1</sup>H NMR spectrum (600 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K)ligand L4H.



Figure S5. <sup>1</sup>H NMR spectrum (600 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K)ligand L5H.



Figure S6. <sup>1</sup>H NMR spectrum (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) ligand L6H.



Figure S7. <sup>13</sup>C NMR spectrum (150 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) ligand L1H.



Figure S8. <sup>13</sup>C NMR spectrum (150 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) ligand L2H.



**Figure S10.** <sup>13</sup>C NMR spectrum (150 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) ligand L4H.



Figure S11. <sup>13</sup>C NMR spectrum (150 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) ligand L5H.



Figure S12.  $^{13}$ C NMR spectrum (75 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) ligand L6H.



**Figure S13.** <sup>1</sup>H NMR spectrum (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) complex **1**.

 $^{13}\text{C}$  NMR (75 MHz,  $\text{C}_6\text{D}_6,$  298 K):  $\delta$  171.5, 158.5, 135.9, 134.8, 127.8, 124.0, 123.6, 121.2, 118.3, 113.9, 60.5, 38.3.



Figure S14. <sup>1</sup>H NMR spectrum (300 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) complex 2.

 $^{13}\text{C}$  NMR (75 MHz,  $C_6D_6,$  298 K):  $\delta$  171.4, 158.3, 149.2, 136.1, 135.8, 135.0, 123.4, 122.0, 121.0, 117.5, 99.46, 60.2, 38.2, 19.8.



Figure S15. <sup>1</sup>H NMR spectrum (300 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) complex 3.

 $^{13}\text{C}$  NMR (100 MHz,  $C_6\text{D}_6,$  298 K):  $\delta$  171.3, 159.8, 159.2, 149.5, 136.8, 136.2, 135.4, 123.8, 121.4, 117.2, 113.1, 60.2, 55.5, 39.1.



Figure S16. <sup>1</sup>H NMR spectrum (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) complex 4.

 $^{13}\text{C}$  NMR (75 MHz,  $C_6D_6,$  298 K):  $\delta$  171.4, 163.4, 158.6, 153.2, 149.0, 135.8, 124.3, 120.9, 118.9, 116.3, 112.7, 60.1, 55.9, 38.0.



Figure S17. <sup>1</sup>H NMR spectrum (300 MHz, CDCl<sub>3</sub>, 298 K) complex 5.

<sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>, 298 K): δ 172.1, 163.4, 158.6, 153.2, 149.0, 135.8, 124.3, 120.9, 118.9, 116.3, 112.7, 55.9, 38.0.



**Figure S18.** <sup>1</sup>H NMR spectrum (400 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) complex **6**.

<sup>13</sup>C NMR (100 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K): δ 172.6, 169.4, 158.9, 149.6, 141.7, 136.0, 135.2, 130.2, 129.8, 123.7, 121.4, 117.9, 60.3, 39.2, 36.0, 34.1, 31.9, 30.0.

| Compound                             | 1                             | 2                                   | 4                      |  |
|--------------------------------------|-------------------------------|-------------------------------------|------------------------|--|
| Formula                              | $C_{28}H_{26}N_4O_2Zn$        | $C_{30}H_{30}N_4O_2Zn \cdot C_6H_6$ | $C_{30}H_{30}N_4O_4Zn$ |  |
| Formula weight                       | 515.92                        | 622.01                              | 575.97                 |  |
| Crystal system                       | monoclinic                    | monoclinic                          | monoclinic             |  |
| Space group                          | P2/c                          | P2/n                                | C2/c                   |  |
| a (Å)                                | 9.7337(10)                    | 9.911(3)                            | 28.036(13)             |  |
| b (Å)                                | 6.0539(6)                     | 6.0729(9)                           | 5.992(3)               |  |
| <i>c</i> (Å)                         | 21.730(2)                     | 27.229(4)                           | 19.822(9)              |  |
| <i>B</i> (°)                         | 101.532(3)                    | 93.877(16)                          | 123.660(18)            |  |
| V (ų)                                | 1254.6(2)                     | 1635.1(7)                           | 2772(2)                |  |
| Z                                    | 2                             | 2                                   | 4                      |  |
| D <sub>c</sub> (g cm <sup>-3</sup> ) | 1.366                         | 1.327                               | 1.388                  |  |
| μ (mm⁻¹)                             | 1.614                         | 1.544                               | 1.584                  |  |
| F(000)                               | 536.0                         | 652                                 | 1200.0                 |  |
| Indep. refl. measured                | <b>5. refl. measured</b> 2358 |                                     | 2235                   |  |
| Param./restraints                    | Param./restraints 211         |                                     | 178                    |  |
| R1 [F₀> 4 σF₀)]                      | 0.0388 (2191)                 | 0.0564 (2236)                       | 0.0360 (2067)          |  |
| "R2 (all refl)                       | 0.1071 0.1665                 |                                     | 0.1004                 |  |
| GooF                                 | 1.089                         | 1.039                               | 1.054                  |  |
| ρ min (eÅ <sup>-3</sup> )            | -0.501                        | -0.33                               | -0.19                  |  |
| ρ max (e Å-³)                        | 0.212                         | 0.46                                | 0.23                   |  |

Table S1. Crystal data and refinement details for complexes 1, 2 and 4



Figure S19. Crystal packing of compound 1.



Figure S20. Crystal packing of compound 2.



Figure S21. Crystal packing of compound 4.



Figure S22. Columnar assembly along the *b*-axis for (a) compound 2 and (b) compound 4. CH···O and CH···N short distances are depicted in light blue, CH-pi short distances in orange
Table S2. Thermal analysis of complexes 1-5

Dynamic

Isothermal (250°C)

| Complex | Degradation<br>temperature (°C) | Loss in weight (%) | Degradation time<br>(min) | Loss in weight (%) |  |
|---------|---------------------------------|--------------------|---------------------------|--------------------|--|
| 1       | 298                             | -40                | 48                        | -40                |  |
| 2       | 300                             | -40                | 47                        | -39                |  |
| 3       | 286                             | -42                | 38                        | -35                |  |
| 4       | 290                             | -67                | 44                        | -25                |  |
| 5       | 291                             | -21                | 46                        | -22                |  |
|         |                                 |                    |                           |                    |  |



Figure S23. TGA of complex 1.

## Stability test.

In the glovebox 0.0070 g (11 $\mu$ mol) of **2** were weighted and then transferred to an NMR tube. The compound was stored under air atmosphere in an oil bath at 150°C for 15 hours. Then, the solid was dissolved in 0.5mL of C<sub>6</sub>D<sub>6</sub> and analyzed by <sup>1</sup>H NMR spectroscopy.





Figure S24. <sup>1</sup>H NMR spectra (400 MHz, C<sub>6</sub>D<sub>6</sub>, 25°C) of complex 2 before and after the stability test.

**Figure S25.** Kinetic plots for ROP of L-LA promoted by Zn catalysts **5** and **6** depicting reaction orders of unity with respect to the monomer concentration. Reaction conditions:  $Zn = 5\mu mol$ ; [L-LA] : [Zn] : [BnOH] = 100:1:1; T=50 °C; 0.5 mL of CDCl<sub>3</sub>.

**Table S3.** Polymerization tests of L-lactide promoted by **1-6** in toluene at 80 °C. Conversions after 2 min for the calculation of TOF.

| Entry <sup>[a]</sup> | Cat | Conv1 | TOF <sup>[b]</sup><br>(h <sup>-1</sup> ) | Conv2 | M <sub>nGPC</sub> <sup>[c]</sup> | <b>Đ</b> <sup>[c]</sup> | M <sup>th[c]</sup> |
|----------------------|-----|-------|------------------------------------------|-------|----------------------------------|-------------------------|--------------------|
|                      |     | (70)  |                                          | (%)   | (10³)                            |                         | (10³)              |
| 1                    | 1   | 49    | 1470                                     | 94    | 4.4                              | 1.6                     | 13.5               |
| 2                    | 2   | 51    | 1530                                     | >99   | 4.6                              | 1.8                     | 14.4               |
| 3                    | 3   | 28    | 815                                      | 83    | 3.9                              | 1.6 <sup>[e]</sup>      | 12.0               |
| 4                    | 4   | 65    | 1950                                     | >99   | 4.1                              | 1.7                     | 14.4               |
| 5                    | 5   | 46    | 1380                                     | 84    | 3.9                              | 1.7 <sup>[e]</sup>      | 12.1               |
| 6                    | 6   | 85    | 2550                                     | >99   | 4.2                              | 1.6                     | 12.2               |

Conv 1 after reaction time of 2 min. [b] TOF values were evaluated by NMR after 2 min; Conv 2= conversion after reaction time of 20 min.



Table S4. Polymerization experiments at 180 °C.





**Figure S27.** MALDI TOF spectrum of a PLA sample obtained by the test conditions: [L-LA]:[1][BnOH] of 20:1:1, 1 eq = 30µmol, 80°C in toluene, 1 h after the quantitative conversion of monomer.



Figure S28. <sup>1</sup>H NMR spectrum of a degradation reaction of PLLA (entry 1 of Table 6).

• Test of recycling of the catalyst per the PLA degradation by methanolysis.

0.576 g (8mmol) of PLA plastic cups, 10 mL of methanol and 0.026 g of **1** (50  $\mu$ mol,) were added to a 25mL Schlenk tube. Methanolysis was carried out at 65°C. After two hours, the reaction mixture was analyzed by <sup>1</sup>H NMR spectroscopy (Figure S33). The resonances of methyl lactate as single product of degradation were observed. The methanol and methyl lactate were removed under vacuum to recover the catalyst and the solid residue was analyzed by <sup>1</sup>H NMR spectroscopy (Figure S34). Then, equal amounts of methanol (10mL) and PLA plastic cups (0.5760mg, 8mmol, 800eq) were added to the Schlenk tube and refluxed for two more hours. The reaction mixture was analyzed by <sup>1</sup>H NMR spectroscopy (Figure S35).



**Figure S29.** <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>, 25 °C) of the PLA degradation by complex **2**. First step.



**Figure S30.** <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>, 25 °C) of the solid residual after evaporation in vacuo of methyl lactate.



**Figure S31.** <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>, 25 °C) of the products after the second degradation step.

## Stability test of complex 2 for glycolysis reaction.

In the glovebox 0.0027g (52mol) of 2 and 0.4mL of ethylene glycol were weighted and then

transferred to a 10mL tube with a magnetic stirrer. The test was conducted in the air, heating the mixture at 150°C. After one hour, the reaction mixture was dried under vacuum and then analyzed by <sup>1</sup>H NMR spectroscopy.



**Figure S32.** <sup>1</sup>H NMR spectrum (400 MHz,  $C_6D_6$ , 25 °C) of the solid residue of complex **2** after heating with ethylene glycol.



**Figure S33.** <sup>1</sup>H NMR spectrum (400 MHz,  $C_6D_6$ , 25 °C) of the solid residue of complex 2 after heating with ethylene glycol in comparison to the complex 2 and the related ligand.