Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Electronic supplementary material

Boosting propane dehydroaromatization by confining PtZn alloy nanoparticles within H-ZSM-5 crystals

Hui Chen,^{‡a} Wei Li,^{‡a} Mingchao Zhang,^a Wangyang Wang,^a Xian-hua Zhang,^a Fa Lu,^a Kang Cheng,^{*ab} Qinghong Zhang^{*a} and Ye Wang^{ab}

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for

Energy Materials, College of Chemistry and Chemical Engineering, Xiamen 361005, China

^b Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen

361005, China

‡ These authors contributed equally to this work.

*Corresponding authors: <u>kangcheng@xmu.edu.cn</u> and <u>zhangqh@xmu.edu.cn</u>

Fig. S1. XRD patterns of bifunctional *x*Pt-1Zn@H-ZSM-5 catalysts

Table S1 Textural properties of H-ZSM-5, yZn@H-ZSM-5, and xPt-yZn @H-ZSM-5 catalysts.

Catalyst	Si/Al ª	$S_{BET}{}^{b}$	S _{micro} ^c	$V_{\text{total}}{}^{d}$	V _{micro} ^e	Crystal sizes ^f
	ratio	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	(µm)
H-ZSM-5	15	363	253	0.20	0.11	1–2
H-ZSM-5	35	354	252	0.18	0.10	1–2
H-ZSM-5	60	353	267	0.23	0.11	1–2
H-ZSM-5	120	314	262	0.24	0.10	1–2
0.5Zn@H-ZSM-5	15	338	244	0.19	0.11	1–2
1Zn@H-ZSM-5	15	338	246	0.19	0.11	1–2
2Zn@H-ZSM-5	15	328	246	0.19	0.11	1–2
3Zn@H-ZSM-5	15	308	239	0.17	0.11	1–2
4Zn@H-ZSM-5	15	303	233	0.17	0.10	1–2
5Zn@H-ZSM-5	15	275	214	0.16	0.10	1–2
0.7Pt@H-ZSM-5	15	323	236	0.20	0.10	1–2
0.7Pt-1Zn@H-ZSM-5	15	313	228	0.18	0.10	1–2

^a By X-ray fluorescence spectrometry

^b BET method

^c t-plot method

^d Single point desorption total pore volume, $P/P_0 = 0.99$

^e t-plot method

^f By scanning electron microscopic (SEM)

Fig. S2. N₂ adsorption-desorption isotherms of (a) H-ZSM-5 with different Si/Al ratios, (b) *y*Zn@H-ZSM-5, and (c) 0.7Pt-1Zn@H-ZSM-5.

Catalyst	Si/Al	Acidity b	y NH ₃ -TPD	$(\mu mol g^{-1})^a$	Acidity by Py-FTIR (µmol g ⁻¹)			
Cataryst	ratio	Strong	weak	total	Brønsted	Lewis	B/L	
H-ZSM-5	15	357	567	924	237	11	21	
H-ZSM-5	35	159	224	383	132	12	11	
H-ZSM-5	60	90	124	214	61	19	3	
H-ZSM-5	120	51	70	121	29	12	2	
0.5Zn@H-ZSM-5	15	319	590	909	218	50	4.4	
1Zn@H-ZSM-5	15	295	562	857	206	109	1.9	
2Zn@H-ZSM-5	15	217	504	721	114	160	0.7	
3Zn@H-ZSM-5	15	182	551	733	81	145	0.6	
4Zn@H-ZSM-5	15	157	559	716	80	189	0.4	
5Zn@H-ZSM-5	15	139	532	671	70	205	0.3	
0.7Pt@H-ZSM-5	15	342	558	900	223	33	6.8	
0.7Pt-1Zn@H-ZSM-5	15	311	563	874	213	86	2.5	

Table S2 Acid densities of catalysts estimated by NH₃-TPD and Pyridine-adsorbed FT-IR.

^a By deconvolution of NH₃-TPD profiles

Fig. S3. XRD profiles for 0.7Pt-1Zn@H-ZSM-5 before and after reduction by H₂ at 550 °C for 2 h.

Catalyst	C ₃ H ₈ conv.		Selectivity(%)						
	(%)	CH_4	C_2H_4	C_2H_6	C_3H_6	C_{4^+}	Aro.	(%)	
1Ga/H-ZSM-5	40	17.6	8.4	8.9	8.3	4.0	53	21	
Ga@H-ZSM-5	31	11	7.4	20	15	4.6	42	13	
1Zn@H-ZSM-5	34	14	8.7	9.7	9.6	2.9	55	19	
0.7Pt@H-ZSM-5	81	8.4	1.9	45	6.1	1.9	36	30	
0.05Pt-1Zn@H-ZSM-5	39	12	7	12.7	10	2.3	56	22	
0.1Pt-1Zn@H-ZSM-5	68	5.0	1.0	30	9.2	2.8	53	36	
0.3Pt-1Zn@H-ZSM-5	71	4.8	0.9	30	8.9	2.6	53	38	
0.5Pt-1Zn@H-ZSM-5	72	4.7	0.8	30	8.9	2.4	53	38	
0.7Pt-1Zn@H-ZSM-5	72	4.6	0.8	30	8.7	2.4	54	39	
1.0Pt-1Zn@H-ZSM-5	72	4.5	0.8	31	8.9	2.4	52	38	

Table S3 Catalytic performances of 1Ga/H-ZSM-5 and xPt-1Zn@H-ZSM-5 catalysts.

Reaction condition: $W_{cat} = 0.2$ g, $F_{C3H8} = 10$ mL min⁻¹, $F_{N2} = 10$ mL min⁻¹, T = 550 °C, P = 1 bar, TOS = 10 min.

Fig. S4. Distribution of aromatic hydrocarbons over 0.7Pt-1Zn@H-ZSM-5. Reaction condition: $W_{cat} = 0.2$ g, $F_{C3H8} = 10$ mL min⁻¹, $F_{N2} = 10$ mL min⁻¹, T = 550 °C, P = 1 bar, TOS = 10 min.

Fig. S5. TG analysis of 0.7Pt@H-ZSM-5, 1Zn@H-ZSM-5, and 0.7Pt-1Zn@H-ZSM-5 catalysts after reaction for 10 h. Compared with converted propane, about 0.2% of propane in weight percentage was converted into coke.

Cotolyst	Si/Al ^a	$\mathbf{S}_{\text{BET}}{}^{\text{b}}$	S _{micro} ^c	$V_{\text{total}}{}^{d}$	V _{micro} ^e
Catalyst	atomic ratio	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
1Zn@H-ZSM-5	15	338	246	0.19	0.11
1Zn@H-ZSM-5-10 h	15	117	84	0.08	0.04
0.7Pt@H-ZSM-5	15	323	236	0.20	0.10
0.7Pt@H-ZSM-5-10 h	15	34	23	0.01	0.01
0.7Pt-1Zn@H-ZSM-5	15	313	228	0.18	0.10
0.7Pt-1Zn@H-ZSM-5-10 h	15	103	80	0.07	0.04

Table S4 Textural properties of 1Zn@H-ZSM-5, 0.7Pt@H-ZSM-5, and 0.7Pt-1Zn@H-ZSM-5 catalysts afterreaction for 10 h.

^a By X-ray fluorescence spectrometry

^b BET method

^c t-plot method

^d Single point desorption total pore volume, $P/P_0 = 0.99$

^e t-plot method

	Si/Al	Acidity by NH ₃ -TPD $(\mu mol g^{-1})^a$					
Catalyst	ratio	Strong	weak	total			
1Zn@H-ZSM-5	15	295	562	857			
1Zn@H-ZSM-5-10 h	15	156	375	531			
0.7Pt@H-ZSM-5	15	342	558	900			
0.7Pt@H-ZSM-5-10 h	15	30	126	156			
0.7Pt-1Zn@H-ZSM-5	15	311	563	874			
0.7Pt-1Zn@H-ZSM-5-10 h	15	167	362	529			

Table S5 Acid densities of 1Zn@H-ZSM-5, 0.7Pt@H-ZSM-5, and 0.7Pt-1Zn@H-ZSM-5 catalysts afterreaction for 10 h.

^a By deconvolution of NH₃-TPD profiles

Fig. S6. TEM images of (a) 0.7Pt-1Zn/Al₂O₃ and (b) 0.7Pt-1Zn@H-ZSM-5, the insets show the Pt-Zn nanoparticle size distribution. SEM images of (c) H-ZSM-5, (d) 0.7Pt-1Zn/Al₂O₃/H-ZSM-5, (e) 0.7Pt-1Zn@H-ZSM-5, and (f) 0.7Pt-1Zn@H-ZSM-5/Al₂O₃.

Fig. S7. NH₃-TPD profiles of different samples. The density of strong acid evaluated from the high-temperature peak was normalized to zeolite weight and displayed in the figure.

Samples	Pt loading (wt%) ^a	Zn loading (wt%) ^a
Pt-Zn/Al ₂ O ₃	0.69	1.15
Pt-Zn/Al ₂ O ₃ /H-ZSM-5	0.32	0.61
Pt-Zn@H-ZSM-5	0.74	1.13
Pt-Zn@H-ZSM-5/Al ₂ O ₃	0.35	0.58

^a By inductive coupled plasma-atomic emission spectrometer (ICP-AES)

Spatial distance	Contact	C ₃ H ₈ Selectivity (%)						Aro.	
	time	conv.	CH_4	C_2H_4	C_2H_6	C_3H_6	C_{4^+}	Aro.	yield
	(s)	(%)							(%)
millimeter scale	1.2	42	24	13	14	11	6.4	32	13
micrometer scale	1.2	41	20	12	14	8.8	3.6	42	17
nanometer scale	1.2	42	15	8.1	16	8.2	2.7	50	21
atom scale	1.2	74	4.7	0.7	29	7.5	2.0	56	41
millimeter scale	2.4	45	27	14	16	10	8.0	25	11
micrometer scale	2.4	46	25	13	19	8.8	3.2	31	14
nanometer scale	2.4	44	16	7.6	22	8.3	3.1	43	19
atom scale	2.4	81	5.8	0.8	32	5.5	1.5	55	45

Table S7 The effect of contact time over catalysts with different spatial distances between functional sites.

Reaction condition: $W_{(cat)} = 0.4$ g, $F_{(C3H8)} = 10$ or 5 mL min⁻¹, $F_{(N2)} = 10$ or 5 mL min⁻¹, T = 550 °C, P = 1 bar,

TOS = 10 min.