Supplementary Information

One-Step Production of Renewable Adipic Acid Esters from Mucic Acid over an Ir-ReO_x/C Catalyst with Low Ir Loading

Jun Hee Jang^{a,†}, Jack T. Hopper^{b,†}, Insoo Ro^{a,c}, Phillip Christopher^{a,*}, Mahdi M. Abu-Omar^{a,b,*}

a. Department of Chemical Engineering, University of California Santa Barbara Santa Barbara, California 93106 United States E-mail: abuomar@chem.ucsb.edu

b. Department of Chemistry and Biochemistry, University of California Santa Barbara Santa Barbara, California 93106 United States

c. Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology Seoul 01811, Republic of Korea

† Co-first author

* Correspondence: abuomar@chem.ucsb.edu, pchristopher@ucsb.edu

Entry	Catalyst(s)	T (°C)	Time (h)	Yield (%)	PGM Content (mol%)	Hydrogenation cost/mol product ^[a,b]	Total catalyst cost/mol product ^[a,c]	Ref.
1	Step 1. HReO ₄ Step 2. Pd/C	1. 170 2. RT	1.15 2.4	62	7.0 Re, 2.0 Pd	\$302	\$323	[1]
2	CH ₃ ReO ₃ , TsOH, Pt/C	200	48	75	5.0 Re, 3.0 Pt	\$265	\$277	[2]
3	Step 1. CH ₃ ReO ₃ , TsOH Step 2. Pt/C	1. 120 2. 160	1. 12 2. 12	99	5.0 Re, 3.0 Pt	\$201	\$210	[2]
4	Re/C, Pd/C	120	72	58	9.9 Re, 1.8 Pd	\$290	\$322	[3]
5	KReO ₄ , Pd/C	140	72	21	8.7 Re, 1.6 Pd	\$712	\$789	[3]
6	Pd-ReO _x /C, Amberlyst-15	110	24	95	5.4 Re, 0.94 Pd	\$92	\$103	[4]
7	KReO ₄ , H ₃ PO ₄ , Pd/C, activated C	150	48	86	1.0 Re, 0.75 Pd	\$82	\$84	[5]
8	Pt-ReO _x /C	170	24	85	3.6 Re, 1.4 Pt	\$109	\$117	[6]
9	Ir-ReO _x /C	200	48	63	3.5 Re, 0.042 Ir	\$17	\$28	This Work

Table S1. Catalyst cost in literature of DODH-hydrogenation of mucic acid.

[a] Price of Re metal from U.S. Geological Survey, Mineral Commodity Summaries 2021.⁷ All other PGM prices obtained from Umicore.⁸

[b] Cost based on content of M (Pd, Pt or Ir) used for hydrogenation.[c] Cost based on total PGM (Re + hydrogenation M) content.

	R = H or isopropyi										
$HO \xrightarrow{O} OH OH OH OH Catalyst OR + 3 + RO \xrightarrow{O} OR OR OR + 1 + RO \xrightarrow{O} OR $											
Conv ^[b] Products / % yield ^[b]											
Entry	1 (°C)	l ime (h)	(%)	2	3	4	5	Oxepane	Others		
1		1	60	47	1	2	0	0	10		
2		6	83	24	20	20	2	0	17		
3	180	12	96	8	39	19	4	1	25		
4		24	99	1	45	12	16	3	22		
5		12+12	99	1	37	7	28	3	23		
6		12	96	2	32	7	25	4	26		
7	200	24	98	0	27	6	33	4	28		
8		48	100	0	2	1	63	7	27		
9		1	82	17	23	18	3	2	19		
10	220	6	96	0	27	7	29	4	29		
11		12	98	0	14	5	42	5	32		
12		24	100	0	0	0	59	10	31		
[a] Reaction conditions: batch reaction Ir-ReO /C-480 (150mg) 1 (210 mg) i-PrOH (40 mL) and N ₂ (15 har)											

Table S2. DODH-CTH Tandem Reaction of 1 over Ir-ReO_x/C-480.^[a]

[a] Reaction conditions: batch reaction, Ir-ReO_x/C-480 (150mg), 1 (210 mg), *i*-PrOH (40 mL), and N₂ (15 bar).
[b] Conversion and yield are calculated by ¹H NMR.

$\frac{\underset{H \circ \overset{O}{\leftarrow} H \overset{O}{\leftarrow} H}{\underset{H \circ \overset{O}{\leftarrow} H \overset{O}{\leftarrow} $		L			R =	H or isopro	pyl			
Entry Catalyst $\frac{\text{Conv.}^{[b]}}{\binom{9}{2}} \frac{2}{3} \frac{3}{4} \frac{5}{5} \text{ Oxepane Others}$ 1 Ir-ReO _x /C-480 96 0 27 7 29 4 29		о он он но он он о 1	catalyst <i>i</i> -PrOH N ₂	RO 2	OR + C		+ RO	or 5		
$\frac{1}{1} \text{ Ir-ReO}_{x}/\text{C}-480 96 0 27 7 29 4 29$	Enter	Catalyst	Conv. ^[b] (%)	Products / % yield ^[b]						
$1 Ir-ReO_x/C-480 96 0 27 7 29 4 29$	Enuy			2	3	4	5	Oxepane	Others	
	1	Ir-ReO _x /C-480	96	0	27	7	29	4	29	
2 Ir-ReO _x /C-530 91 0 16 5 34 3 33	2	Ir-ReO _x /C-530	91	0	16	5	34	3	33	
3 Ir-ReO _x /C-580 80 0 10 3 31 4 32	3	Ir-ReO _x /C-580	80	0	10	3	31	4	32	

Table S3. DODH-CTH Tandem Reaction of 1 over $Ir-ReO_x/C$ catalysts prepared in different thermal treatment temperatures.^[a]

[a] Reaction conditions: batch reaction, catalyst (150mg), 1 (210 mg), *i*-PrOH (40 mL), and N₂(15 bar), 220°C, 6 h.
[b] Conversion and yield are calculated by ¹H NMR.

Table S4. Carbon balance of DODH-CTH by Ir-ReO_x/C.^[a]

[a] Reaction conditions: batch reaction, 220 °C, 6 h, Ir-ReO_x/C (150mg, 4.5 wt% Re, 0.045 wt% Ir) 1 (210 mg, 1 mmol), *i*-PrOH (40 mL), and N₂(15 bar).

[b] Yield is calculated by ¹H NMR.

[c] (yield of 1+2+3+4+5+oxepane)*100

[d] (yield of all identified C3 products in liquid)/538*100

		5 h	~ 111 by 11 -ReO _x	/ C- 550. ² 3	R = H or isc	lvaora						
о он он	Ir-ReO /C	No.	o.	ö		0	0					
но	он		RO OR H	- RO	OR + RC		+ R0					
1	, ÓH	۰ ٥	2	3	0	4	5					
(1) 1 mmol) (2) 0.98 mmol) (3) 0.81 mmol)	(1) 528 mmol) (2) 517 mmol) (3) 520 mmol)											
	C6 yield (mmol) ^[b]											
	1	2	3	4	5	Oxepane	C6 carbon Balance (%) ^[c]					
1.4 77	0.41	0.14	0.25	0.12	0.01	0.04	97%					
I st Use			C3	yield (mmo	l) ^[b]							
	Liquid phase	OH	0			\wedge	C3 carbon Balance (%) ^[d]					
	Elquid phase	509	0.70	2.9	0.03	0.72	97%					
	C6 yield (mmol) ^[b]											
	1	2	3	4	5	Oxepane	C6 carbon Balance (%) ^[c]					
	0.21	0.62	0.03	0.04	0.02	0.05	98%					
2 nd Cycle	C3 yield (mmol) ^[b]											
	Liquid phase	OH	0				C3 carbon Balance (%) ^[d]					
	1 1	461	2.27	22.7	2.65	0.23	95%					
	C6 yield (mmol) ^[b]											
	1	2	3	4	5	Oxepane	C6 carbon Balance (%) ^[c]					
	0.14	0.47	0.01	0.03	0.01	0.11	95%					
3 rd Cycle			С3	yield (mmo	J) ^[b]							
	Liquid phase	OH	0			\wedge	C3 carbon Balance (%) ^[d]					
	I . F	486	1.82	9.93	0.71	0.33	96%					

Table S5. Carbon balance of DODH-CTH by Ir-ReO_x/C-530.^[a]

[a] Reaction conditions: batch reaction, 220 °C, 0.5 h, Ir-ReO_x/C (150mg, 4.5 wt% Re, 0.045 wt% Ir) 1 (210 mg, 1 mmol), *i*-PrOH (40 mL), and N₂(15 bar). Subsequent reuse experiments were scaled down to maintain the 1st cycle catalyst/substrate ratio.

[b] Yield is calculated by ¹H NMR.

[c] (yield of 1+2+3+4+5+oxepane)*100

[d] (yield of all identified C3 products in liquid)/initial mmol *i*-PrOH *100

Figure S1. ¹H NMR spectra from reaction over MoO_x/C . After the reaction, the reaction solution was concentrated under reduced pressure and dissolved in d_6 -DMSO. The sample was analyzed by ¹H NMR with benzaldehyde as an internal standard. Reaction conditions: batch reaction, MoO_x/C (150 mg, 4.5 wt% Mo), **1** (210 mg, 1 mmol), N₂ (15 bar), isopropanol (40 mL), 180°C, and 6 h.

Figure S2. ¹H and ¹³C NMR spectra of the products from DODH-CTH over Ir-ReO_x/C. After reaction, the spent catalyst was filtered, washed with isopropanol(30 mL), and dried in 120°C oven overnight. The reaction solution was concentrated under reduced pressure. The concentrated products were dissolved in d_6 -DMSO and analyzed by NMR with benzaldehyde as an internal standard. Reaction conditions: batch reaction, Ir-ReO_x/C-480 (150 mg, 4.33 wt% Re and 0.045 wt% Ir), **1** (210 mg, 1 mmol), N₂ (15 bar), isopropanol (40 mL), 220°C, and 24 h.

Figure S3. ¹H NMR over the course of the DODH-CTH tandem reaction. Reaction conditions: batch reaction, Ir-ReO_x/C-480 (150 mg, 4.33 wt% Re and 0.045 wt% Ir), **1** (210 mg, 1 mmol), N₂ (15 bar), isopropanol (40 mL), and 220°C.

Figure S4. DODH-CTH tandem reaction with different substrates. Reaction conditions: batch reaction, Ir-ReO_x/C-480 (150 mg, 4.33 wt% Re and 0.045 wt% Ir), substrate (1 mmol), N₂ (15 bar), isopropanol (40 mL), and 220°C, and 6 h. Synthesis method of 1-diester was described elsewhere.⁶

Figure S5. XPS spectra of the Ir-ReO_x/C prepared at 480°C (Ir-ReO_x/C-480) and at 530°C (Ir-ReO_x/C-530) (**A**) Re 4f and (**B**) Ir 4f.

/ 1	А) C	2	A					
Catalyst	Ir 4f		Re 4f						
Catalyst	Ir (0), %	Ir (IV), %	Re (0), %	Re (II), %	Re (IV), %	Re (VI), %	Re (VII), %		
Fresh – 480°C	0	100	8	-	21	-	71		
$Fresh-530^{\circ}\mathrm{C}$	0	100	13	-	27	-	60		
24 h (in-situ)	100	0	38	-	12	36	14		
Spent	0	100	16	-	28	3	53		
Regenerated	0	100	-	-	8	-	92		

Table S6. Oxidation states of Pt and Re of fresh $Ir-ReO_x/C-480$, $Ir-ReO_x-530$, in-situ samples after 24 h reaction, spent $Ir-ReO_x/C-530$, and regenerated $Ir-ReO_x/C-530$.

Figure S6. STEM high-angle annular dark-field (HAADF) analysis with particle size distribution and EDX mapping of C, Re, and Ir.

Figure S7. The change in catalyst mass after regeneration at different temperatures. Regeneration conditions: 100 mg spent Ir-ReO_x/C-530 catalyst, thermal temperature (300-400°C), 4h, air flow.

Reference

- Shiramizu, M.; Toste, F. D. Expanding the Scope of Biomass-Derived Chemicals through Tandem Reactions Based on Oxorhenium-Catalyzed Deoxydehydration. *Angew. Chem. Int. Ed.* 2013, 52 (49), 12905–12909.
- (2) Li, X.; Wu, D.; Lu, T.; Yi, G.; Su, H.; Zhang, Y. Highly Efficient Chemical Process to Convert Mucic Acid into Adipic Acid and DFT Studies of the Mechanism of the Rhenium-Catalyzed Deoxydehydration. *Angew. Chem. Int. Ed.* **2014**, *53* (16), 4200–4204.
- (3) Hočevar, B.; Prašnikar, A.; Huš, M.; Grilc, M.; Likozar, B. H₂-Free Re-Based Catalytic Dehydroxylation of Aldaric Acid to Muconic and Adipic Acid Esters. *Angew. Chem. Int. Ed.* 2021, 60 (3), 1244-1253.
- (4) Deng, W.; Yan, L.; Wang, B.; Zhang, Q.; Song, H.; Wang, S.; Zhang, Q.; Wang, Y. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. *Angew. Chem. Int. Ed.* 2021, 60 (9), 4712-4719.
- (5) Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. Hydrogen Gas-Mediated Deoxydehydration/Hydrogenation of Sugar Acids: Catalytic Conversion of Glucarates to Adipates. *J. Am. Chem. Soc.* 2017, *139* (40), 14001–14004.
- (6) Jang, J.H.; Ro, I.; Christopher, P.; Abu-Omar, M. M. A Heterogeneous Pt-ReO_x/C Catalyst for Making Renewable Adipates in One Step from Sugar Acids. *ACS Catal.* **2021**, *11* (1), 95-109.
- (7) Rhenium. *Mineral Commodity Summaries 2021*; U.S. Geological Survey; Reston, VA, 2021; 134-135.
- (8) Umicore Precious Metals Management Prices. https://pmm.umicore.com/en/prices/ (accessed 2022-03-10).