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Table S1. Catalyst cost in literature of DODH-hydrogenation of mucic acid.

Entry Catalyst(s) T (°C) Time (h) Yield 
(%)

PGM Content 
(mol%)

Hydrogenation 
cost/mol product[a,b]

Total catalyst 
cost/mol 

product[a,c]
Ref.

1 Step 1. HReO4 
Step 2. Pd/C

1. 170
2. RT

1. 15
2. 4 62 7.0 Re, 2.0 Pd $302 $323 [1]

2 CH3ReO3, TsOH, 
Pt/C 200 48 75 5.0 Re, 3.0 Pt $265 $277 [2]

3
Step 1. CH3ReO3, 

TsOH
Step 2. Pt/C

1. 120
2. 160

1. 12
2. 12 99 5.0 Re, 3.0 Pt $201 $210 [2]

4 Re/C, Pd/C 120 72 58 9.9 Re, 1.8 Pd $290 $322 [3]

5 KReO4, Pd/C 140 72 21 8.7 Re, 1.6 Pd $712 $789 [3]

6 Pd-ReOx/C, 
Amberlyst-15 110 24 95 5.4 Re, 0.94 Pd $92 $103 [4]

7 KReO4, H3PO4, 
Pd/C, activated C 150 48 86 1.0 Re, 0.75 Pd $82 $84 [5]

8 Pt-ReOx/C 170 24 85 3.6 Re, 1.4 Pt $109 $117 [6]

9 Ir-ReOx/C 200 48 63 3.5 Re, 0.042 Ir $17 $28 This 
Work

[a] Price of Re metal from U.S. Geological Survey, Mineral Commodity Summaries 2021.7 All other PGM prices obtained 
from Umicore.8 
[b] Cost based on content of M (Pd, Pt or Ir) used for hydrogenation.
[c] Cost based on total PGM (Re + hydrogenation M) content.
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Table S2. DODH-CTH Tandem Reaction of 1 over Ir-ReOx/C-480.[a]

OR

O
RO

O

OR

O
RO

O

OH

O

OH

OH

OH

OH
HO

O catalyst

N2

OR

O
RO

O

OR

O
RO

O

R = H or isopropyl

1 2

3

4

5
i-PrOH

Products / % yield[b]

Entry T (°C) Time (h) Conv.[b] 

(%) 2 3  4 5 Oxepane Others

1 1 60 47 1 2 0 0 10

2 6 83 24 20 20 2 0 17

3 12 96 8 39 19 4 1 25

4 24 99 1 45 12 16 3 22

5

180

12+12 99 1 37 7 28 3 23

6 12 96 2 32 7 25 4 26

7 24 98 0 27 6 33 4 28

8

200

48 100 0 2 1 63 7 27

9 1 82 17 23 18 3 2 19

10 6 96 0 27 7 29 4 29

11 12 98 0 14 5 42 5 32

12

220

24 100 0 0 0 59 10 31
[a] Reaction conditions: batch reaction, Ir-ReOx/C-480 (150mg), 1 (210 mg), i-PrOH (40 mL), and N2 (15 bar).
[b] Conversion and yield are calculated by 1H NMR.
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Table S3. DODH-CTH Tandem Reaction of 1 over Ir-ReOx/C catalysts prepared in different 
thermal treatment temperatures.[a]

OR
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O

OR

O
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O

OH

O

OH
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OH

OH
HO

O catalyst

N2

OR

O
RO

O

OR

O
RO

O

R = H or isopropyl

1 2

3

4

5
i-PrOH

Products / % yield[b]

Entry Catalyst Conv.[b] 

(%) 2 3  4 5 Oxepane Others

1 Ir-ReOx/C-480 96 0 27 7 29 4 29

2 Ir-ReOx/C-530 91 0 16 5 34 3 33

3 Ir-ReOx/C-580 80 0 10 3 31 4 32
[a] Reaction conditions: batch reaction, catalyst (150mg), 1 (210 mg), i-PrOH (40 mL), and N2 (15 bar), 220°C, 6 h.
[b] Conversion and yield are calculated by 1H NMR.

Table S4. Carbon balance of DODH-CTH by Ir-ReOx/C.[a]

OR

O
RO

O
OR

O
RO

O
OH

O

OH

OH

OH

OH
HO

O Ir-ReOx/C N2
OR

O
RO

O
OR

O
RO

O

R = H or isopropyl

1
(1 mmol)

2 3 4 5OH O

O

220oC, 6 h

(538 mmol)

C6 yield (mmol)[b]

1 2 3 4 5 Oxepane C6 carbon 
Balance (%)c

0.04 0 0.27 0.07 0.29 0.04 71

C3 yield (mmol)[b]

OH O

O
C3 carbon 

Balance (%)d
Liquid phase

485 1.4 3.8 91

[a] Reaction conditions: batch reaction, 220 oC, 6 h, Ir-ReOx/C (150mg, 4.5 wt% Re, 0.045 wt% Ir) 1 (210 mg, 1 
mmol), i-PrOH (40 mL), and N2 (15 bar).
[b] Yield is calculated by 1H NMR.
[c] (yield of 1+2+3+4+5+oxepane)*100
[d] (yield of  all identified C3 products in liquid)/538*100
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Table S5. Carbon balance of DODH-CTH by Ir-ReOx/C-530.[a]

OR

O
RO

O
OR

O
RO

O
OH

O

OH

OH

OH

OH
HO

O Ir-ReOx/C N2 OR

O
RO

O
OR

O
RO

O

R = H or isopropyl

(2) 0.98 mmol)

2 3 4 5OH O

O

220oC, 0.5 h

(1) 528 mmol)

(3) 520 mmol)
(2) 517 mmol)

1
(1) 1 mmol)

(3) 0.81 mmol)

C6 yield (mmol)[b]

1 2 3 4 5 Oxepane C6 carbon 
Balance (%)[c]

0.41 0.14 0.25 0.12 0.01 0.04 97%

C3 yield (mmol)[b]

OH O

O
C3 carbon 

Balance (%)[d]

1st Use

Liquid phase
509 0.70 2.9 0.03 0.72 97%

C6 yield (mmol)[b]

1 2 3 4 5 Oxepane C6 carbon 
Balance (%)[c]

0.21 0.62 0.03 0.04 0.02 0.05 98%

C3 yield (mmol)[b]

OH O

O
C3 carbon 

Balance (%)[d]

2nd Cycle

Liquid phase
461 2.27 22.7 2.65 0.23 95%

C6 yield (mmol)[b]

1 2 3 4 5 Oxepane C6 carbon 
Balance (%)[c]

0.14 0.47 0.01 0.03 0.01 0.11 95%

C3 yield (mmol)[b]

OH O

O
C3 carbon 

Balance (%)[d]

3rd Cycle

Liquid phase
486 1.82 9.93 0.71 0.33 96%

[a] Reaction conditions: batch reaction, 220 oC, 0.5 h, Ir-ReOx/C (150mg, 4.5 wt% Re, 0.045 wt% Ir) 1 (210 mg, 1 
mmol), i-PrOH (40 mL), and N2 (15 bar). Subsequent reuse experiments were scaled down to maintain the 1st cycle 
catalyst/substrate ratio.
[b] Yield is calculated by 1H NMR.
[c] (yield of 1+2+3+4+5+oxepane)*100
[d] (yield of  all identified C3 products in liquid)/initial mmol i-PrOH *100
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Figure S1. 1H NMR spectra from reaction over MoOx/C. After the reaction, the reaction solution was 
concentrated under reduced pressure and dissolved in d6-DMSO. The sample was analyzed by 1H NMR 
with benzaldehyde as an internal standard. Reaction conditions: batch reaction, MoOx/C (150 mg, 4.5 wt% 
Mo), 1 (210 mg, 1 mmol), N2 (15 bar), isopropanol (40 mL), 180°C, and 6 h.
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Figure S2.  1H and 13C NMR spectra of the products from DODH-CTH over Ir-ReOx/C. After reaction, the 
spent catalyst was filtered, washed with isopropanol(30 mL), and dried in 120°C oven overnight. The 
reaction solution was concentrated under reduced pressure. The concentrated products were dissolved in 
d6-DMSO and analyzed by NMR with benzaldehyde as an internal standard. Reaction conditions: batch 
reaction, Ir-ReOx/C-480 (150 mg, 4.33 wt% Re and 0.045 wt% Ir), 1 (210 mg, 1 mmol), N2 (15 bar), 
isopropanol (40 mL), 220°C, and 24 h.
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Figure S3.  1H NMR over the course of the DODH-CTH tandem reaction. Reaction conditions: batch 
reaction, Ir-ReOx/C-480 (150 mg, 4.33 wt% Re and 0.045 wt% Ir), 1 (210 mg, 1 mmol), N2 (15 bar), 
isopropanol (40 mL), and 220°C.

Figure S4.  DODH-CTH tandem reaction with different substrates. Reaction conditions: batch reaction, Ir-
ReOx/C-480 (150 mg, 4.33 wt% Re and 0.045 wt% Ir), substrate (1 mmol), N2 (15 bar), isopropanol (40 
mL), and 220°C, and 6 h. Synthesis method of 1-diester was described elsewhere.6
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Figure S5. XPS spectra of the Ir-ReOx/C prepared at 480°C (Ir-ReOx/C-480) and at 530°C (Ir-ReOx/C-
530) (A) Re 4f and (B) Ir 4f.

Table S6. Oxidation states of Pt and Re of fresh Ir-ReOx/C-480, Ir-ReOx-530, in-situ samples after 24 h 
reaction, spent Ir-ReOx/C-530, and regenerated Ir-ReOx/C-530. 

Ir 4f Re 4f
Catalyst 

Ir (0), % Ir (IV), % Re (0), % Re (II), % Re (IV), % Re (VI), % Re (VII), %

Fresh – 480°C 0 100 8 - 21 - 71

Fresh – 530°C 0 100 13 - 27 - 60

24 h 
(in-situ) 100 0 38 - 12 36 14

Spent 0 100 16 - 28 3 53

Regenerated 0 100 - - 8 - 92
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Figure S6. STEM high-angle annular dark-field (HAADF) analysis with particle size distribution and 
EDX mapping of C, Re, and Ir. 
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Figure S7.  The change in catalyst mass after regeneration at different temperatures. Regeneration 
conditions: 100 mg spent Ir-ReOx/C-530 catalyst, thermal temperature (300-400°C), 4h, air flow.
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