Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Heterogenization of molecular cobalt catalysts in robust metalorganic frameworks for efficient photocatalytic CO₂ reduction

Srinivasulu Parshamoni, Cédric Viravaux, Marc Robert, Caroline Mellot-Draznieks, Gui Chen, Pierre Mialane, Anne Dolbecq and Julien Bonin

Table of contents

Figure S1. Pictures and SEM images	S 3
Figure S2. Powder X-ray diffraction patterns of UiO-67-bpydc, Coqpy@UiO-67- bpydc, PCN-777 and CoTPA@PCN-777	S4
Figure S3. N ₂ adsorption isotherms at 77 K of UiO-67-bpydc and Coqpy@UiO-67- bpydc and PCN-777 and CoTPA@PCN-777	S 5
Table S1. EDS analysis of Coqpy@UiO-67-bpydc and CoTPA@PCN-777 before and after the photocatalytic events.	S 6
Figure S4. Thermogravimetric curves of UiO-67-bpydc and Coqpy@UiO-67-bpydc.	S7
Table S2. Comparison between calculated and experimental weight losses determinedby TGA analysis for UiO-67-bpydc and Coqpy@UiO-67-bpydc.	S 7
Figure S5. Thermogravimetric curves of PCN-777 and CoTPA@PCN-777.	S8
Table S3. Comparison between calculated and experimental weight losses determinedby TGA analysis for PCN-777 and CoTPA@PCN-777.	S 8
Figure S6. ¹ H NMR spectrum of UiO-67-bpydc digested in NaOD.	S9
Table S4. Photocatalytic CO2 reduction experiments using Coqpy@UiO-67-bpydc as catalyst.	S10

Table S5. CO ₂ photocatalytic activity of Coqpy@UiO-67-bpydc and UiO-67 using [Ru(phen) ₃](PF ₆) ₂ as a photosensitizer.	S10
Table S6. Photocatalytic CO ₂ reduction experiments using CoTPA@PCN-777 as catalyst.	S11
Table S7. CO_2 photocatalytic activity of CoTPA@PCN-777 and PCN-777 using $[Ru(phen)_3](PF_6)_2$ as a photosensitizer.	S11
Figure S7. CO and H ₂ TONs as a function of time for Coqpy@UiO-67-bpydc and CoTPA@PCN-777 .	S12
Table S8. Photocatalytic production of CO and H ₂ for Coqpy@UiO-67-bpydc and CoTPA@PCN-777 as a function of time.	S13
Table S9. Photocatalytic activity of CoTPA@UiO-67-bpydc and Coqpy@PCN-777 compared to other Cat@MOFs based photocatalytic systems.	S14
Figure S8. Recyclability tests in three consecutive experiments for the Coqpy@UiO- 67-bpydc and CoTPA@PCN-777 catalysts.	S15

a)

b)

UiO-67-bpydc

Coqpy@UiO-67-bpydc

PCN-777

CoTPA@PCN-777

UiO-67-bpydc

Coqpy@UiO-67-bpydc

PCN-777

CoTPA@PCN-777

Figure S1. a) Pictures and b) SEM images of the crystallites of MOFs before and after impregnation.

Figure S2. Experimental powder X-ray diffraction patterns of a) UiO-67-bpydc and Coqpy@UiO-67-bpydc and b) PCN-777 and CoTPA@PCN-777.

Figure S3. N₂ adsorption isotherms at 77 K of a) UiO-67-bpydc and **Coqpy@UiO-67-bpydc**, and b) PCN-777 and **CoTPA@PCN-777**.

Table S1. Comparison between the Co/Zr_6 , Cl/Zr_6 and Ru/Zr_6 ratios determined by EDS analysis (Exp.) and the ratios calculated (Calc.) using the formula indicated below for **Coqpy@UiO-67-bpydc** and **CoTPA@PCN-777** before and after the photocatalytic events.

	Co/Zr ₆		Cl/Zr ₆		Ru/Zr ₆ ^a
	Calc.	Exp.	Calc.	Exp.	Exp.
Coqpy@UiO-67-bpydc	0.10	0.11	0.20	0.18	-
Coqpy@UiO-67-bpydc after catalysis	0.10	0.10	0.20	0.18	0.40
CoTPA@PCN-777	0.04	0.04	0.08	0.09	-
CoTPA@PCN-777 after catalysis	0.04	0.05	0.08	0.08	0.45

^a The presence of Ru detected in both samples by EDS measurements indicates that a small amount of PS has been immobilized in the MOFs during the catalytic events.

We have considered the following formulae, deduced from EDS measurements and TGA analyses (see below):

For Coqpy@UiO-67-bpydc:

 $[Zr_6O_4(OH)_8(H_2O)_4][C_{12}H_6N_2O_4]_4[Co(C_{20}N_4H_{14})(H_2O)_2]_{0.10}(ClO_4)_{0.20}\bullet 3H_2O$

For **CoTPA@PCN-777**: $[Zr_6O_4(OH)_{10}(H_2O)_6][C_{24}H_{12}N_3O_6]_2[CoC_{18}N_4Cl]_{0.04}Cl_{0.04}\bullet 11H_2O\bullet 2DEF$ with DEF = diethylformamide

Figure S4. Thermogravimetric curves of UiO-67-bpydc and Coqpy@UiO-67-bpydc.

Two main weight losses are observed: the first loss below 200°C corresponds to the removal of solvent molecules, the weight loss between 200 and 450°C corresponds to linker combustion along with the formation of inorganic oxides. For a non-defective UiO-67-bpydc MOF of formula $Zr_6O_4(OH)_4(bpydc)_6$ this second weight loss, corresponding to the formation of ZrO_2 , should be around 65%. The lower experimental weight loss (~56%) indicates the presence of linker deficiencies.¹³ It has been reported that $bpydc^{2-}$ linkers are replaced by modulator molecules, in this study acetate, and also by formate coming from the decomposition of DMF. NMR spectroscopy of UiO-67-bpydc digested in NaOD solution allowed to estimate the ratios between the different organic molecules (bpydc/acetate/formate) (Fig. S6). The other missing linkers are replaced by OH⁻ and H₂O molecules.

Table S2. Comparison between calculated and experimental weight losses (corresponding to solvent departure) and residual weight after the formation of oxides determined by TGA analysis for UiO-67-bpydc and **Coqpy@UiO-67-bpydc**.

	Weight loss (solv	vent departure)	Residual weight (oxides)		
	Calc.	Exp.	Calc.	Exp.	
UiO-67-bpydc	7.3	7.9	35.8	36.4	
Coqpy@UiO-67-bpydc	6.8	8.8	38.9	39.9	

We have considered the following formulae:

 $[Zr_6O_4(OH)_{5.4}(H_2O)_{1.4}][C_{12}H_6N_2O_4]_{4.6}[CH_3CO_2]_{0.8}[HCO_2]_{0.6} \cdot 1.7DMF (M = 2041 g mol^{-1})$ for UiO-67-bpydc

 $[Zr_{6}O_{4}(OH)_{8}(H_{2}O)_{4}][C_{12}H_{6}N_{2}O_{4}]_{4}[Co(C_{20}N_{4}H_{14})(H_{2}O)_{2}]_{0.10}(ClO_{4})_{0.20}\bullet 3H_{2}O \ (M = 1903 \ g \ mol^{-1}) \ for \ Coqpy@UiO-67-bpydc$

Table S3. Comparison between calculated and experimental weight losses (corresponding to solvent departure) and residual weight after the formation of oxides determined by TGA analysis for PCN-777 and **CoTPA@PCN-777**.

	Weight loss	(solvent departure)	Residual weight (oxides)		
	Calc.	Exp.	Calc.	Exp.	
PCN-777	31.0	31.8	28.7	28.7	
CoTPA@PCN-777	18.4	23.5	34.0	33.8	

We have considered the following formulae:

 $[Zr_6O_4(OH)_{10}(H_2O)_6][C_{24}H_{12}N_3O_6]_2 \cdot 8DEF (M = 2575 \text{ g mol}^{-1}) \text{ for PCN-777}$

 $[Zr_{6}O_{4}(OH)_{10}(H_{2}O)_{6}][C_{24}H_{12}N_{3}O_{6}]_{2}[CoC_{18}N_{4}Cl]_{0.04} \bullet 11H_{2}O \bullet 2DEF (M = 2182 \text{ g mol}^{-1}) \text{ for } CoTPA@PCN-777$

Figure S6. ¹H NMR spectrum of UiO-67-bpydc digested in NaOD with the attribution of H in the various molecules. The star refers to acetone impurity.

Entry	SED	Photosensitizer	CO (µmol)	H ₂ (µmol)	Selectivity CO (%)
1	TEOA (0.2 mL)	[Ru(bpy) ₃]Cl ₂ (0.5 mM)	2.77	0.97	74
2	TEA (0.2 mL)	[Ru(bpy) ₃]Cl ₂ (0.5 mM)	0.76	1.57	33
3	BIH (5 mM)	[Ru(bpy) ₃]Cl ₂ (0.5 mM)	5.89	0.20	95
4 ^b	BIH (5 mM)	[Ru(bpy) ₃]Cl ₂ (0.5 mM)	0	0.23	0
5	-	[Ru(bpy) ₃]Cl ₂ (0.5 mM)	0	0	0
6	BIH (5 mM)	-	0	0	0
7	BIH (20 mM)	$[Ru(bpy)_3]Cl_2(1 mM)$	9.20	0.32	97
8	BIH (20 mM)	$[Ru(phen)_3](PF_6)_2(1 mM)$	14.80	1.06	93

Table S4. Photocatalytic CO₂ reduction experiments using **Coqpy@UiO-67-bpydc** as catalyst.^a

^a Reaction conditions: **Coqpy@UiO-67-bpydc** (1.0 mg), photosensitizer $[Ru(bpy)_3]Cl_2$ (0.5 to 1 mM) or $[Ru(phen)_3](PF_6)_2$ (1 mM) and sacrificial electron donor (SED) (TEOA (0.2 mL) or TEA (0.2 mL) or BIH (5 to 20 mM)) in 3 mL (2.5 mL CH₃CN + 0.5 mL H₂O) solutions and irradiated with a solar simulator AM 1.5G with a 400 nm cut-off filter, CO₂ (99.999%), reaction time 24 h. ^b Argon was used instead of CO₂.

Table: S5. CO_2 photocatalytic activity of **Coqpy**@UiO-67-bpydc and UiO-67 using [Ru(phen)₃](PF₆)₂ as photosensitizer.^a

Entry	Catalyst	Solvent	Pro	duct yield	Selectivity CO (%)	
			СО	H_2	HCOO.	
1	Coqpy@UiO-67-bpydc	CH ₃ CN+H ₂ O	14.80	1.06	0.54	90
2	-	CH ₃ CN+H ₂ O	1.07	0.34	1.29	40
3	Coqpy@UiO-67-bpydc	CH ₃ CN	0	0	1.15	0
4 ^b	Coqpy@UiO-67-bpydc	CH ₃ CN+H ₂ O	11.70	5.81	2.61	58
5	UiO-67-bpydc	CH ₃ CN+H ₂ O	0.97	0.32	1.36	36

^a Reaction conditions: **Coqpy@UiO-67-bpydc** (1.0 mg) or UiO-67-bpydc (1.0 mg), photosensitizer $[Ru(phen)_3](PF_6)_2$ (3 mg, 1 mM) and sacrificial electron donor (SED) (BIH (20 mM)) in 3 mL (2.5 mL CH₃CN + 0.5 mL H₂O) solutions and irradiated with a solar simulator AM 1.5G with a 400 nm cut-off filter, CO₂ (99.999%), reaction time 24 h.^b Sacrificial electron donor (SED) = BIH (20 mM)+TEOA (0.1 mL).

Entry	SED	Photosensitizer	CO (µmol)	H ₂ (µmol)	Selectivity CO (%)
1	TEOA (0.2 mL)	$[Ru(phen)_3](PF_6)_2(0.3 \text{ mM})$	3.02	0.12	93
2	TEA (0.2 mL)	$[Ru(phen)_3](PF_6)_2(0.3 \text{ mM})$	2.84	1.89	60
3	BIH (5 mM)	$[Ru(phen)_3](PF_6)_2(0.3 \text{ mM})$	5.85	1.02	85
4 ^b	BIH (5 mM)	$[Ru(phen)_3](PF_6)_2(0.3 \text{ mM})$	0	0.26	0
5	-	[Ru(bpy) ₃](Cl) ₂ (0.5 mM)	0	0	0
6	BIH (5 mM)	-	0	0	0
7	BIH (5 mM)	[Ru(bpy) ₃](Cl) ₂ (0.5 mM)	3.81	2.37	61
8	BIH (20 mM)	$[Ru(phen)_3](PF_6)_2(1 \text{ mM})$	7.09	0.59	93

Table S6. Photocatalytic CO₂ reduction experiments using CoTPA@PCN-777 as catalyst.^a

^a Reaction conditions: **CoTPA@PCN-777** (1.0 mg), photosensitizer $[Ru(bpy)_3]Cl_2$ (0.5 to 1 mM) / $Ru(Phen)_3(PF_6)_2$ (0.3 mM to1 mM)] and sacrificial electron donor (SED), (TEOA (0.1 mL) or TEA (0.1 mL) or BIH (5 to 20 mM)), solution 3 mL (2.5 mL CH₃CN + 0.5 mL H₂O) irradiated with a solar simulator AM 1.5G with a 400 nm cut-off filter, CO2 (99.999%), reaction time (24 h). ^bArgon was used instead of CO₂.

Table: S7. CO_2 photocatalytic activity of **CoTPA@PCN-777** and PCN-777 using [Ru(phen)₃](PF₆)₂ as a photosensitizer.^a

Entry	Catalyst	Solvent	Product	yield (µ	mol)	Selectivity CO (%)
			HCOO-	CO	H ₂	
1	CoTPA@PCN-777	CH ₃ CN+H ₂ O	0.84	8.89	0.59	83
2	-	CH ₃ CN+H ₂ O	0	0	0	0
3	CoTPA@PCN-777	CH ₃ CN	0.52	0.03	0	6
4	PCN-777	CH ₃ CN+H ₂ O	1.30	1.15	0.34	41

^a Reaction conditions: **CoTPA@PCN-777** or PCN-777 (1.0 mg), photosensitizer $[Ru(Phen)_3](PF_6)_2$ (3 mg, 1mM) and sacrificial electron donor (SED) (BIH (20 mM)) in 3 mL (2.5 mL CH₃CN + 0.5 mL H₂O) solutions and irradiated with a solar simulator AM 1.5G with a 420 nm cut-off filter, CO₂ (99.999%), reaction time 24 h.

Figure S7. CO (black) and H₂ (red) TONs as a function of time during irradiation of a CO₂saturated CH₃CN/H₂O (2.5 mL/0.5 mL) solution containing b) **Coqpy@UiO-67-bpydc** (1 mg) or **CoTPA@PCN-777** (1 mg), 1 mM [Ru(phen)₃](PF₆)₂ and 20 mM BIH, based on the averaged results of three parallel reaction runs.

Table S8. Photocatalytic production of CO and H ₂ for Coqpy@UiO-67-bpydc and	ıd
CoTPA@PCN-777 as a function of time.	

Catalyst	Time	Product Yi	eld (µmol)	CO TON	CO selectivity (%)
		СО	H ₂		
Coqpy@UiO-67-bpydc	1 h	0.29	0	6	100
	3 h	2.03	0	38	100
	5 h	4.86	0.13	92	97
	23 h	13.78	1	260	93
	24 h	14.18	1.06	268	93
CoTPA@PCN-777	1 h	0.38	0.13	21	74
	3 h	0.80	0.33	44	71
	5 h	1.27	0.38	70	77
	6 h	1.66	0.39	91	81
	22 h	8.11	0.59	442	93
	24 h	8.82	0.59	482	94

^a Reaction conditions: Coqpy@UiO-67-bpydc (1.0 mg), photosensitizer [Ru(phen)₃](PF₆)₂ (3 mg, 1 mM) and sacrificial electron donor (SED) (BIH (20 mM)) in 3 mL (2.5 mL CH₃CN + 0.5 mL H₂O) solutions irradiated with a solar simulator AM 1.5G with a 400 nm cut-off filter, CO₂ (99.999%).

Table S9. Photocatalytic activity of Coqpy@UiO-67-bpydc and CoTPA@PCN-777compared to other Cat@MOFs based photocatalytic systems.

Heterogeneous Cat@MOFs catalystsª (mass)	CO rate (µmol g ⁻¹ h ⁻¹)	H _. rate (μmol g ⁻¹ h ⁻¹)	HCOOH rate (µmol g ⁻¹ h ⁻¹)	CO TON (time)	Select ivity CO (%)	PS	SD	Solvent/ Proton donor	Wavelen gth	Reference
CoTPA@PCN-777 (1 mg)	368	25	-	482 (24 h)	94	Ru(phen) ₃	ВІН	CH ₃ CN/H ₂ O	>400	This work
Coqpy@UiO-67-bpydc (1 mg)	617	44	-	268 (24 h)	93	Ru(phen) ₃	ВІН	CH ₃ CN/H ₂ O	>400	This work
Re(bpydc)(CO) ₃ Cl@PCN- 222(Zn) (3 mg)	1070	-	-	1893 (59 h)	100	TCPP(Zn) (MOF linker)	BIH	DMF/H ₂ O	>500	ACS Appl. Mater. Interfaces 2021, 13 , 2710
(Re(bpydc)(CO) _g Br, Ru(bpy) ₂ (bpydc))@NH _g - MIL-101(Al) (3.5 mg)	NM ^b	-	-	9.2 (10 h)	100	Ru(bpy)₂(b pdc) (MOF linker)	TEOA	CH ₃ CN	450	ACS Catal. 2021, 11 , 871
(Re(bpymc)(CO) ₂ Cl, Ru(bpy) ₂ (bpymc))@MBA- MOF-808 (3 mg)	440	-	-	28 (30 h)	>99	Ru(bpy)₂(b pymc)	H ₂ O	H ₂ O	400-800	Energy Environ. Sci. 2021, 14 , 2429
(Cu(bpydc)(pyridine)Cl, Ru(bpy) ₂ (bpydc))@EuMOF (2 mg)	96 (10h)	-	-	NM	100	Ru(bpy)₂(b pdc) (MOF linker)	TIPA	CH ₃ CN/H ₂ O	>400	J. Am. Chem. Soc. 2021, 143 , 6114
(Ru(bpydc)(CO) ₂ Cl ₂ , Ru(bpy) ₂ (bpydc)@MOF- 253(Al) (5 mg)	46	18	121	7.3 (8 h)	24.9	Ru(bpy)₂(b pdc) (MOF linker)	TEOA	CH ₃ CN	420-800	Chem. Commun. 2015, 51 , 2645
(Ni(bpet), Ru(bpy)₂(bpydc))@UiO-67 (20 mg)	426	-	-	581 (20 h)	99	Ru(bpy)₂(b pdc) (MOF linker)	BIH + TEOA	DMF/H ₂ O	~420	Science Bulletin 2019, 64 , 976
Co(bpydc)Cl _, @UiO-67 (1 mg)	3292	7095	-	49 (4 h)	31.7	Ru(bpy) ₃	ΤΕΟΑ	CH ₃ CN/H ₂ O	400-800	ACS Appl. Mater. Interfaces 2020, 12 , 24059
Re(bpydc)(CO) ₃ Cl@UiO-67 (1 mg)	412	227	-	10 (4 h)	64.5	Ru(bpy) ₃	TEOA	CH ₃ CN/H ₂ O	400-800	ACS Appl. Mater. Interfaces 2020, 12 , 24059

^a The formula of the molecular catalyst (Cat) is written in blue, ^bNM = not mentioned

Figure S8. Recyclability tests in three consecutive experiments of a) **Coqpy@UiO-67-bpydc** and b) **CoTPA@PCN-777** catalysts towards photocatalytic production of CO in the presence of $[Ru(phen)_3](PF_6)_2$ (1 mM) and BIH (20 mM) in a CO₂-saturated CH₃CN/H₂O (2.5 mL / 0.5 mL) solution after 6 h and 24 h catalytic runs, respectively.