Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

1	Electronic Supporting Information
2	
3	Exploring Coverage–Dependent Chain–Growth Mechanisms on Ru(111) for Fischer–Tropsch Synthesis
4	
5	Yueyue Jiao ^{a,b,c} , Huan Ma ^{a,b,c} , Pengju Ren ^{a,c} , Teng Li ^d , Yong-Wang Li ^{a,b,c} , Xiao-Dong Wen ^{*a,b,c,e} , and Haijun Jiao ^{*f}
6	
7	(a) State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. (b)
8	The University of Chinese Academy of Sciences, Beijing 100049, China. (c) National Energy Center for Coal to Liquids, Synfuels
9	China Co., Ltd., Beijing 101400, China. (d) State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of
10	Chemical Physics, Chinese Academy of Sciences, No.18, Tianshui Middle Road, Lanzhou, 730000, China. (e) Beijing Advanced
11	Innovation Center for Materials Genome Engineering, Industry–University Cooperation Base between Beijing Information S&T
12	University and Synfuels China Co. Ltd, Beijing, China. (f) Leibniz-Institut für Katalyse e.V.; Albert-Einstein Strasse 29a, 18059
13	Rostock, Germany: E-mails: wxd@sxicc.ac.cn; and Haijun.jiao@catalysis.de

1 As shown in Figure S1, there are merely consistent CO adsorption patterns on the Ru(0001) and Ru(111) surfaces. On Ru(111) 2 (Figure S2), the first region shows a stable 1 ML CO coverage (9CO) from 0 to 225 K, where all adsorbed CO molecules are at the 3 hcp sites (Figure S2). Very similar regions are found on Ru(0001). However, the 1 MLCO region is not found previously because of different model,¹ and the main difference comes from the adsorption sites (hcp vs. top). As shown in Table S1, the adsorption of 4 5 all CO molecules at the hcp sites is 1.08 and 0.53 eV more stable than that at the top sites on the Ru(111) and Ru(0001) surfaces, 6 respectively. Disordered CO adsorption on Ru(0001) was observed below 77 K by scanning tunneling microscopy (STM) in an 7 ultrahigh vacuum (UHV) chamber with a base pressure of 7 × 10⁻¹¹ mbar,² however, it does not give clear evidence about the CO 8 coverage. Under UHV (5×10^{-11} mbar pressure), temperature programmed desorption (TPD) shows CO coverage of 0.54 ML at 370 9 K, 0.43 ML at 413 K and 0.22 ML at 490 K,³ which is consistent with the computed results (dashed line, Figure S1b).

 Figure S1. Phase diagrams of stable CO coverage as a function of temperature and CO partial pressure (ln(P/P^o)). (a) Ru(111)

 12
 surface (b) Ru(0001) surface (dash line for CO pressure of 5 × 10⁻¹¹ mbar).

13	

10

 14
 Table S1. DFT energies (E, eV) and zero-point energies (ZPE, eV) of 9 CO adsorbed at different sites on Ru(111) and Ru(0001).

 Ru(111)
 Ru(0001)

 site
 E
 ZPE
 A(E+ZPE)
 E
 ZPE
 C(E+ZPE)

 Site
 E
 ZPE
 C(E+ZPE)

 Site
 E
 ZPE
 C(E+ZPE)

 Site
 E
 ZPE
 C(E+ZPE)

hcp	-434.30	1.95	-432.35	0.00	-436.94	1.92	-435.01	0.00
fcc	-433.78	1.92	-431.83	0.52	-436.73	1.99	-434.74	0.27
top	-433.35	2.10	-431.23	1.08	-436.67	2.12	-434.48	0.53
bridge	-433.75	2.04	-431.75	0.60	-436.60	2.00	-434.12	0.83

15

(a) Ru(111)	0 1 CO (-1.67 eV)	2 CO (-1.61 eV)	3 CO (-1.59 eV)	4 CO (-1.07 eV)	5 CO (-1.08 eV)	6 CO (-0.64 eV)	7 CO (-0.59 eV)	8 CO (1.66 eV)	9 CO (-0.43 eV)
(b) Ru(0001)	1 CO (-1.64 eV)	2 CO (-1.62 eV)	3 CO (-1.63 eV)	4C0 (-1.14eV)	5 CO (-0.95 eV)	6 CO (-0.80 eV)	7 CO (-0.58 eV)	8 CO (1.25 eV)	9 CO (-0.09 eV)

Figure S2. Stepwise adsorption energy (the values in the brackets) of CO. (a) Ru(111). (b) Ru(0001)

Table S2. Gibbs free energies (ΔG , eV) of the 1 H adsorption on the highest CO pre-covered Ru(111) surface and on the highest CO pre-covered Ru(111) surface with one CO desorption (423 K, 30 atm, and $p_{H2}/p_{CO} = 2/1$)

Reactions	ΔG
$7CO + 0.5H_2(g) = 7CO + H$	0.64
$7CO + 0.5H_2(g) = 6CO + H + CO(g)$	0.50

Figure S3. Surface structures of the initial (IS), transition (TS) and final (FS) states for the formation of HCO and COH on preadsorbed $CH_x(x = 0-3)$ with the forming C-H bond length (D_{TS}) in the transition state (top structures are those at the lowest coverage, and bottom structures are those at CO pre-saturation coverage)

Figure S4. Gibbs free energy barriers and reaction energies (eV) for the competitive CH_x hydrogenation and CH_x-C1 coupling at the lowest coverage.

Figure S5. Gibbs free energy barriers and reaction energies (eV) for the competitive CH_x hydrogenation and CH_x-C1 coupling at CO pre-saturation coverage

 $(d) CH_{3}$ $(H_{3}+CO+H = CH_{4}+CO (D_{TS} = 1.615 \text{ Å})$ $(H_{3}+CO = CH_{3}CO (D_{TS} = 1.847 \text{ Å})$ $(H_{3}+CO = CH_{3}CO (D_{TS} = 1.968 \text{ Å})$ $(H_{3}+$

Figure S6. Surface structures of the initial (IS), transition (TS) and final (FS) states for the competitive CH_x hydrogenation and CH_x-C1 coupling at the lowest coverage. Elementary reactions along with the forming C-H or C-C bond length (D_{TS}) in the transition states are given.

C1 coupling at CO pre-saturation CO coverage. Elementary reactions along with the forming C-H or C-C bond length (D_{TS}) in the

transition states are given.

1 Figure S8 3 related ru 5

Figure S8. Surface structures of the initial (IS), transition (TS) and final (FS) states for $CH_2CHO/CH_3CHO/CH_2CO/CH_3CH_2O/CH_3CO$ related reactions at the lowest coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

6 7

Figure S9. Gibbs free energy profiles of CH $_2$ +HCO development on the basis of gaseous H $_2$ on Ru(111) at the lowest coverage

1 2

Figure S10. Gibbs free energy profiles of C+CO development on the basis of gaseous hydrogen at CO pre-saturation coverage

3 As shown in Figure S10, the coupling of C + CO, which has a barrier of 0.88 eV and is exergonic by 0.28 eV, is comparable kinetically with C + H reaction, although the coupling of C + CH₃, C + HCO, and C + CH has lower barrier and is more exergonic 4 5 (0.18/-2.47 eV, 0.25/-1.14 eV, and 0.25/-1.14 eV, respectively, Figure S5a). Starting from CCO, CCO is more favored to be hydroge-6 nated into CHCO, which has a barrier of 0.74 eV and is endergonic by 0.43 eV, while CCO dissociation into CC + O has a higher 7 barrier (3.16 eV) and is much more endergonic (1.77 eV), due to its upright adsorption configuration. Afterwards, CHCO stepwise 8 hydrogenation to CHCOH, CH₂CO, and CHCHO has barriers of 1.22, 1.33, and 1.53 eV and reaction free energies of 0.09, 0.55, and 9 -0.02 eV, respectively, while CHCO dissociation into HCC+O has a barrier of 2.42 eV and is endergonic by 1.53 eV. The further 10 hydrogenation of CHCOH to CHCHOH has a barrier of 0.90 eV and is endergonic by 0.57 eV. Combined with the results in Figure 11 S5a, the barrier for the stepwise hydrogenation from C to CH₄ is 0.91, 1.02, 1.20, and 0.86 eV and the reaction free energy is –0.71, 12 0.76, 0.44, and -1.44 eV, respectively. Starting from C + CO, the most favored route is CH₄ formation, which has an apparent barrier of 1.35 eV and is exergonic by 1.05 eV, and the second most favored route is CCO \rightarrow CHCO \rightarrow CHCOH \rightarrow CHCHOH, which has an 13 14 apparent barrier of 1.37 eV and is endergonic by 0.81 eV. Thermodynamically, CH₄ formation at FTS initial reaction stage is much more favored. Along with the formation of CH_4 , the first C2 initiator is produced on the surface. 15

Figure S11. Surface structures of the initial (IS), transition (TS) and final (FS) states for the CCO/CHCO/CHCOH related reactions at CO pre-saturation coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

Figure S12. Gibbs free energy profiles of CH₂+CO development on the basis of gaseous hydrogen at CO pre-saturation coverage

Figure S13. Surface structures of the initial (IS), transition (TS) and final (FS) states for the $CH_2CO/CH_2CHO/CH_3CHO/CH_3CH_2O$ related reactions at CO pre-saturation coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

Figure S14. Surface structures of the initial (IS), transition (TS) and final (FS) states for the CH₂C/CH₃C/ CH₃CH/CH₃CH₂ related reactions at the lowest coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

S13

Figure S15. Gibbs free energy profiles of CH₂C development on the basis of gaseous hydrogen on Ru(111) at the lowest coverage. And the calculated CH₂CH related reactions

Figure S16. Surface structures of the initial (IS), transition (TS) and final (FS) states for the CH₂CH related reactions at the lowest coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

Figure S17. Surface structures of the initial (IS), transition (TS) and final (FS) states for the $CH_2C/CH_3C/CH_3CH/CH_3CH_2$ related reactions at CO pre-saturation coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

Figure S18. Gibbs free energy profiles of CH₂C and CH₃C development on the basis of gaseous H₂ at CO pre-saturation coverage

Figure S19. Surface structures of the initial (IS), transition (TS) and final (FS) states for the CH₂CH related reactions at CO presaturation coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

Figure S20. Surface structures of the initial (IS), transition (TS) and final (FS) states for the elementary reactions involved in oxygen removal at the lowest coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in the transition states are given.

Figure S21. Surface structures of the initial (IS), transition (TS) and final (FS) states for the elementary reactions involved in

oxygen removal at the highest CO coverage. Elementary reactions along with the forming/dissociating C-X bond length (D_{TS}) in

the transition states are given.

Table S3. The reaction energies (eV) of RDS of our proposed mechanism at different CO/H coverage.

n _{co}	\mathbf{n}_{H}	$E_r(CH_3CO \rightarrow CH_3C+O)$	$E_r(CH_3+CO \rightarrow CH_3CO)$
1	4	-0.67	0.30
1	0	-0.84	0.62
2	2	-0.56	0.29
2	0	-0.77	0.70
3	0	-0.66	0.21
6	0	-0.84	-0.05

At given CO pre-coverage (0.11 and 0.22 ML, respectively), it is found that the reaction of CH₃CO \rightarrow CH₃C+O become more exergonic (-0.67 vs. -0.84 eV; and -0.56 vs. -0.77 eV, respectively) with the decrease of H coverage, while totally opposite trend is found for the reaction of CH₃+CO \rightarrow CH₃CO, i.e., it becomes more endergonic (0.30 vs. 0.62 eV and 0.29 vs. 0.70 eV, respectively) with the decrease of H coverage. This indicated that decreasing H coverage can gradually promote CH₃CO \rightarrow CH₃C+O, while inhibit CH₃+CO \rightarrow CH₃CO.

8 With the increase of CO pre-coverage (0.11, 0.22 and 0.33 ML) the reaction of $CH_3CO \rightarrow CH_3C+O$ become less exergonic (-0.84; 9 -0.77; and -0.66 eV, respectively), while the reaction of $CH_3+CO \rightarrow CH_3CO$ is endergonic at 0.11, 0.22 and 0.33 ML CO pre-coverage 10 (0.62, 0.70 and 0.21 eV, respectively). At the highest CO pre-coverage (0.67 ML), the reaction of $CH_3CO \rightarrow CH_3C+O$ is exergonic by 11 0.84 eV, and the reaction of $CH_3+CO \rightarrow CH_3CO$ becomes exergonic by 0.05 eV. This abnormal change is due to the more sensitive 12 lateral interaction of CO molecules at high coverage than at low coverage.

13

Micro-kinetics analysis

2 Along with the computed energetics of the formation of the first and second C-C bonds, their subsequent development, the 3 formation of CH₃CHO, CH₃CH₂OH, CH₂CH, and HCCH, and the removal of surface oxygen, we also performed micro-kinetics analysis to estimate the reaction rate under the consideration of concentrations of surface species and surface adsorption sites for 4 5 adsorption. Using a common energy reference (H₂, CO, and H₂O or CO₂), we summarized all rate-determining steps (RDS) of CH₄, 6 C2 chain initiator, CH₃CHO, CH₃CH₂OH, CH₂CH₂, HCCH and possible C3 chain initiator at the lowest coverage (Figure S22) and at CO 7 pre-saturation coverage (Figure S23). Full energy profiles are divided by three stages: CO activation, first C-C bond formation, and 8 second C-C bond formation. Our proposed chain growth mechanism was consecutively plotted, and the highest point of the energy 9 profile of the formation of CH₃CHO, CH₃CH₂OH, CH₂CH₂, and HCCH were marked with red stars. Micro-kinetics analysis of the 10 removal of surface oxygen also was done and discussed below.

At the lowest coverage (Figure S22), the formation of CH₄ and the first C-C coupling share the same intermediate CH₂, and they are competitive. Next, the formation of CH₃CHO and CH₃CH₂OH share the same intermediate (CH₃CO) with the formation of C2 initiator. Similarly, the formation of CH₂CH₂ and HCCH formation will be competitive with the formation of C3 initiator.

The first C-C bond formation at the lowest coverage has the RDS of CH₃CO \rightarrow CH₃C+O with an apparent barrier of -0.23 eV, and this step is irreversible because of its strong exergonicity (-1.93 eV). Correcting these energies with CO, H₂ and H₂O as references, the apparent barrier of CH₄ formation is higher than that of the formation of C2 initiator (0.11 vs. -0.23 eV), while the formation of CH₃CHO and CH₃CH₂OH has close apparent barrier with the formation of C2 initiator (-0.28 vs. -0.23 eV). The second C-C coupling, CH₃CH+HCO \rightarrow CH₃CHCHO, has an apparent barrier of -0.93 eV and is exergonic by 1.52 eV. The highest point of the formation of CH₂CH₂ and HCCH is -1.06 and -1.11 eV in their own free energy profiles, respectively. These corrected apparent barriers will be used to obtain rate constant of their formation rate.

1

Figure S22. Full scheme of micro-kinetics analysis at the lowest coverage.

- At CO pre-saturation coverage with CO, H₂ and CO₂ as references (Figure S23), the first C-C bond formation has the RDS of CH₃+6CO \rightarrow CH₃CO+5CO with an apparent barrier of -2.59 eV and is exergonic by 4.06 eV. The highest point of the first C-C bond formation is 0.53 eV lower than that of CO activation (CO self-promoting hydrogenation route⁴). The second C-C coupling of CH₃CH+CO \rightarrow CH₃CHCO has an apparent barrier of -4.21 eV and is exergonic by 5.11 eV. In addition, the formation of CH₄, CH₃CHO, CH₃CH₂OH, CH₂CH₂, and HCCH has an apparent barrier of -2.75, -2.56, -2.56, -4.08, and -4.67 eV, respectively.
- 6 Since the formation of CH₄, CH₃CHO, and CH₃CH₂OH occurs before the first C-O bond dissociation, they will compete with the 7 formation of C2 initiator, while the formation of CH₂CH₂ and HCCH takes place after the first C-O bond dissociation, they will be 8 competitive with the formation of the C3 initiator. Consequently, the formation of C2 initiator is not favored kinetically compared 9 with that of methane (-2.75 vs. -2.59 eV), however, high CO coverage inhibits H₂ adsorption and the subsequent hydrogenation
- 10 steps, the formation of C2 initiator can be promoted at CO pre-saturation coverage as discussed below.
- 11

- 12
- 13

Figure S23. The full scheme of micro-kinetics analysis at CO pre-saturation coverage.

- 14
- 15 On the basis of our thermodynamics results, a complete reaction network starting from gaseous CO and H₂ can be constructed 16 by the following elementary reactions(Table S4). To embody lateral interactions, the adsorption of C1 species and C2 species is 17 thought respectively to occupy one or two sites.
- 19

Reaction at lowest coverage(RL) Reaction at CO pre-saturation coverage (RH)			
		CO activation	
CO(g)+*=CO*	RL1	CO(g)+*=CO*	RH1
H ₂ (g)+2*=2H*	RL2	H ₂ (g)+2*=2H*	RH2
CO*+H*=HCO*	RL3		
		1st C-C coupling	
C*+H*=CH*+*	RL4	C*+H*+6CO*=CH*+*+6CO*	RH3
CH*+H*=CH ₂ *+*	RL5	CH*+H*+6CO*=CH ₂ *+*+6CO*	RH4
CH ₂ *+HCO*=CH ₂ CHO*+*	RL6	CH_2 *+6CO*+H*=CH ₃ *+6CO*+*	RH5
CH ₂ CHO*+*=CH ₂ CO*+H*	RL7	CH ₃ *+6CO*=CH ₃ CO*+5CO*+*	RH6
$CH_2CO*+H*=CH_3CO*$	RL8	CH ₃ CO*+*+5CO*=CH ₃ C*+O*+5CO*	RH7
CH ₃ CO*+*=CH ₃ C*+O*	RL9		
	2	nd C-C coupling	
$CH_3C*+H*=CH_3CH*+*$	RL10	CH₃C*+H*+5CO*=CH₃CH*+*+5CO*	RH8
CH ₃ CH*+HCO*=CH ₃ CHCHO*+*	RL11	$CH_3CH^*+5CO^*=CH_3CHCO^*+^*+4CO^*$	RH9
	rer	noval of surface O	
2O*+2H*=2OH*+2*	RL12	2O*+5CO*+2H*=2OH*+5CO*+2*	RH10
20H*=H ₂ O*+O*	RL13	20H*+5CO*=H ₂ O*+O*+65O*	RH11
$H_2O^*=H_2O(g)+*$	RL14	H ₂ O*+5CO*+O*=H ₂ O(g)+5CO*+O*	RH12
O*+CO*=CO ₂ *+*	RL15	O*+6CO*=CO2*+6CO*	RH13
$CO_2^*=CO_2(g)$	RL16	CO ₂ *+6CO*=CO ₂ (g)+*+6CO*	RH14
	m	ethane formation	
$CH_2^* + H^* = CH_3^* + *$	RL17	CH ₂ *+H*+6CO*=CH ₃ *+*+6CO*	RH15
CH_3 *+H*= CH_4 *+*	RL18	CH ₃ *+H*+6CO*=CH ₄ *+*+6CO*	RH16
CH_4 *= $CH_4(g)$	RL19	CH4*+6CO*=CH4(g)+6CO*	RH17
	CH₃CHO a	nd CH ₃ CH ₂ OH formation	
CH ₂ CHO*+H*=CH ₃ CHO*+*	RL20	CH₃CO*+H*+5CO*=CH₃CHO*+*+5CO*	RH18
CH₃CHO*=CH₃CHO(g)+*	RL21	CH₃CHO*+5CO*=CH₃CHO(g)+5CO*	RH19
$CH_3CHO*+H*=CH_3CH_2O*+*$	RL22	CH ₃ CHO*+5CO*+H*=CH ₃ CH ₂ O*+*+5CO*	RH20
$CH_3CH_2O*+H*=CH_3CH_2OH*+*$	RL23	CH ₃ CH ₂ O*+H*+5CO*=CH ₃ CH ₂ OH*+*+5CO*	RH21
$CH_3CH_2OH^*=CH_3CH_2OH(g)+^*$	RL24	CH₃CH₂OH*+5CO*=CH₃CH₂OH(g)+5CO*	RH22
	CH ₂ CH	and HCCH formation	
$CH_3C^*+H^*=CH_3CH^*+^*$	RL25	CH ₃ C*+H*+5CO*=CH ₃ CH*+*+5CO*	RH23
$CH_3CH^*+^*=CH_2CH^*+H^*$	RL26	CH ₃ CH*+*+5CO*=CH ₂ CH*+H*+5CO*	RH24
$CH_2CH^*+H^*=CH_2CH_2^*+^*$	RL27	CH ₂ CH*+H*+5CO*=CH ₂ CH ₂ *+*+5CO*	RH25
$CH_2CH_2*=CH_2CH_2(g)+*$	RL28	CH ₂ CH ₂ *+5CO*=CH ₂ CH ₂ (g)+*+5CO*	RH26
CH ₂ CH*+*=HCCH*+H*	RL29	CH2CH*+*+5CO*=HCCH*+H*+5CO*	RH27

Since surface O can be removed as $H_2O(g)$ and $CO_2(g)$ at the lowest and CO pre-saturation coverage, respectively, we used CO and H_2 as a common energy reference. On the basis of material conservation principle under the proposed reaction conditions (423 K, 30 atm, and $p_{H_2}/p_{CO}/p_{CH_4}/p_{CO_2}/p_{H_2O} = 10/5/2/2/1$), the energy reference of starting point (CH*) can be corrected to -1.20

6 eV and -4.81 eV at the lowest and CO pre-saturation coverage, respectively.

Starting from CH* and CH*+6CO*, the highest point of the full energy profile of the first C-C bond formation, the transition state of the breaking of C-O bond in CH₃CO* and the coupling of CH₃ + CO which represents the rate-determining step (RDS), should determine the rate of the first C-C bond formation at the lowest and CO pre-saturation coverage, respectively. In our simplified micro-kinetics model, all other steps except RDS are assumed to have quasi-equilibrium. Therefore, the rate of the first C-C coupling reaction can be expressed by Eq. S1 at the lowest coverage (RL) and Eq. S2 at CO pre-saturation coverage (RH):

12 $r_{RL, C2} = k_{RL9}^+ [CH_3CO^*][*]$

Eq. S1

Eq. S2

1 2 3	wherein, k_{RL9}^+ and k_{RH6}^+ are the respective forward rate constant of RL9 and RH6 (Table S4), $r_{RL, C2}$ and $r_{RH, C2}$ are th rate of the first C-C coupling at the lowest and CO pre-saturation coverage, and the concentration of surface species (free sites), [X], represents the number of the adsorbed X per square meter (/m ²).	e respective also surfaœ
4	Because of the proposed quasi-equilibrium, an equilibrium constant of RL8 can be expressed by Eq. S3:	
5	$K_{RL8} = ([CH_3CO^*][*])/([CH_2CO^*][H]^*)$	Eq. S3
6	Wherein, for a given reaction RLn or RHn, the equilibrium constant should be K_{RLn} or K_{RHn}	
7	So,	
8	$[CH_{3}CO^{*}][*] = K_{RL8}[CH_{2}CO^{*}][H^{*}]$	Eq. S4
9	Similarly,	
10	$[CH_2CO^*][H^*] = K_{RL7}[CH_2CHO^*][*]$	Eq. 55
11	$[CH_2CHO^*][^*] = K_{RL6}[CH_2^*][HCO^*]$	Eq. S6
12	Then,	
13	$[CH_{3}CO^{*}][^{*}] = K_{RL8}K_{RL7}K_{RL6}K_{RL5}K_{RL4}K_{RL3}K_{RL2}K_{RL1}\cdots[CO(g)]^{2}[H_{2}(g)]^{2.5}[H_{2}O(g)]^{-1}[^{*}]^{2}$	Eq. 57
14	Substituting Eq. S7 to Eq. S1, we can get Eq. S8	
15	$r_{RL, C2} = k_{RL9}^+ K_{RL8} K_{RL7} K_{RL6} K_{RL5} K_{RL4} K_{RL3} K_{RL2} K_{RL1} \cdots [CO(g)]^2 [H_2(g)]^{2.5} [H_2O(g)]^{-1} [*]^2$	Eq. S8
16	According to the Eyring equation of	
17	$k = (\kappa k_B T/h) \exp(-\Delta G^{*}/RT)$	Eq. S9
18 19	Wherein, k is the rate constant, ΔG^{z} is the Gibbs energy of activation, κ is the transmission coefficient, k_{B} is the constant, T is the temperature and h is the Planck constant.	Boltzmann
20	For an equilibrium reaction,	
21	$\Delta G_r = -RT lnK_r$	Eq. S10
22	Wherein, ΔG_r and K_r is respective Gibbs free energy and equilibrium constant of reaction.	
23	Substituting Eq. S9 and Eq. S10 to Eq. S8, we can get	
24	$r_{RL, C2} = (\kappa k_B T/h) \exp[-(\Delta G_{RL9}^{*} + \Delta G_{sum, before RL9})/RT][CO(g)]^{2}[H_{2}(g)]^{2.5}[H_{2}O(g)]^{-1}[*]^{3}$	Eq. S11
25 26	Wherein, $\Delta G_{sum, before RDS}$ is the sum of Gibbs free energies of all the elementary reactions before rate-determining sterm ΔG_{RLS}^{*} is the barrier of the RDS.	ep (RDS) and
27 28	Analogy to that at the lowest coverage, we also can convert Eq. S2 to Eq. S12 on the basis of gaseous CO, H₂ and CC saturation coverage	0₂ at CO pre-
29	$r_{RH, C2} = (\kappa k_B T/h) \exp[-(\Delta G_{RH6}^{\neq} + \Delta G_{sum, before RH6})/RT] [CO(g)]^8 [H_2(g)]^{1.5} [CO_2(g)]^{-1} [*]^7$	Eq. S12
30 31	Similarly, the rate of the second C-C formation can be determined by RL11 and RH9 respectively, and the rate equatio be expressed by	on can finally

1	$r_{RL, C3} = (\kappa k_B T/h) \exp[-(\Delta G_{RL11}^{\neq} + \Delta G_{sum, before RL11})/RT][CO(g)]^3[H_2(g)]^{4.5}[H_2O(g)]^{-2}[*]^3$	Eq. S13
---	--	---------

2 $r_{RH, C3} = (\kappa k_B T/h) \exp[-(\Delta G_{RHg}^{*} + \Delta G_{sum, before RHg})/RT][CO(g)]^9[H_2(g)]^2[CO_2(g)]^{-2}[*]^7$

The formation of CH₄ has the RDS of the hydrogenation of CH₃ (Table S4, RL18 at the lowest coverage and RH16 at CO presaturation coverage). At the lowest coverage, the formation of CH₃CHO and CH₃CH₂OH has the same RDS of CH₂+HCO \rightarrow CH₂CHO) (RL6) and the formation of CH₂CH₂ and HCCH has the RDS of CH₂CH^{*}+H^{*} \rightarrow CH₂CH₂^{*}+* (RL27) and of CH₃CH^{*}+* \rightarrow CH₂CH^{*}+H^{*}

Eq. S14

5 (RL6) and the formation of CH_2CH_2 and HCCH has the RDS of $CH_2CH^*+H^* \rightarrow CH_2CH_2^*+*$ (RL27) and of $CH_3CH^*+* \rightarrow CH_2CH^*+H^*$ 6 (RL26), respectively. At CO pre-saturation coverage, the formation of CH_3CHO and CH_3CH_2OH has the same RDS of the

7 hydrogenation of CH₃CO into CH₃CHO (RH18) and the formation of CH₂CH₂ and HCCH has the RDS of CH₂CH^{*}+H^{*}+5CO^{*} →

8 $CH_2CH_2*+*+5CO*(RH25)$ and of $CH_2CH*+*+5CO* \rightarrow HCCH*+H*+5CO*(RH27)$, respectively. Therefore, we can express the rate of

 $9 \qquad \mathsf{CH}_4, \mathsf{CH}_3\mathsf{CHO}, \mathsf{CH}_3\mathsf{CH}_2\mathsf{OH}, \mathsf{CH}_2\mathsf{CH}_2, \text{and HCCH formation in the following:}$

10	At the lowest coverage,

3

4

11	$r_{RL, CH4} = k_{RL18}^{+} [CH_3^*][H^*]$	Eq. S15
12	$r_{RL, CH3CH2OH/CH3CHO} = k_{RL6}^+ [CH_2^*][HCO^*]$	Eq. S16
13	$r_{RL, CH2CH2} = k_{RL27}^{+} [CH_2CH^*][H^*]$	Eq. S17
14	$r_{RL, HCCH} = k_{RL26}^{+} [CH_3CH^*][*]$	Eq. S18
15	$r_{RL, H2O} = k_{RL12}^{+} [O^*]^2 [H^*]^2$	Eq. S19
16	$r_{RL, CO2} = k_{RL15}^{+} [O^*][CO^*]$	Eq. S20
17	At CO pre-saturation coverage,	
18	$r_{RH, CH4} = k_{RH16}^{+} [CH_3^*][H^*][CO^*]^6$	Eq. S21
19	$r_{RH, CH3CH2OH/CH3CHO} = k_{RH18}^{+} [CH_{3}CO^{*}][H^{*}][CO^{*}]^{5}$	Eq. S22
20	$r_{RH, CH2CH2} = k_{RH25}^{+} [CH_2CH^*][H^*][CO^*]^5$	Eq. S23
21	$r_{RH, HCCH} = k_{RH27}^{+} [CH_2CH^*][*][CO^*]^5$	Eq. S24
22	$r_{RH,H2O} = k_{RH10}^{+} [O^*]^2 [H^*]^2 [CO^*]^5$	Eq. S25
23	$r_{RH,CO2} = k_{RH13}^{+} [O^*][CO^*]^6$	Eq. S26

24 Wherein, k_{RLn}^+ or k_{RHn}^+ is respectively the forward rate constant of reaction RLn or RHn. r is the rate of the corresponding 25 elementary reaction.

Similar with the chain growth process, we analyzed the rate of the formation of CH₄, CH₃CHO, CH₃CH₂OH, CH₂CH₂, HCCH, H₂O, and CO₂ by assuming all the other steps except RDS are quasi-equilibrium. Then, equations S15-S26 can be expressed by the following:

29 At the lowest coverage (RL),

30	$R_{RL, CH4} = (\kappa k_B T/h) \exp[-(\Delta G_{RL5}^* + \Delta G_{sum, before RL18})/RT][CO(g)][H_2(g)]^3[H_2O(g)]^{-1}[*]^2$	Eq. S27
31	$R_{RL, CH3CH2OH/CH3CHO} = (\kappa k_B T/h) \exp[-(\Delta G_{RL6}^{\neq} + \Delta G_{sum, before RL6})/RT][CO(g)]^2[H_2(g)]^{2.5}[H_2O(g)]^{-1}[*]^2$	Eq. S28
32	$R_{RL, CH2CH2} = (\kappa k_B T/h) \exp[-(\Delta G_{RL27}^{\sharp} + \Delta G_{sum, before RL27})/RT][CO(g)]^2[H_2(g)]^4[H_2O(g)]^{-2}[*]^3$	Eq. S29

1	$R_{RL,HCCH} = (\kappa k_B T/h) \exp[-(\Delta G_{RL26}^{\neq} + \Delta G_{sum, before RL26})/RT][CO(g)]^2[H_2(g)]^4[H_2O(g)]^{-2}[*]^3$	Eq. S30
2	$R_{RL,H2O} = (\kappa k_B T/h) \exp[-(\Delta G_{RL12}^{*} + \Delta G_{sum, before RL12})/RT][O^*]^2[H_2(g)][*]^2$	Eq. S31
3	$R_{RL,CO2} = (\kappa k_B T/h) \exp[-(\Delta G_{RL15}^{\neq} + \Delta G_{sum, before RL15})/RT][O^*][CO(g)][*]$	Eq. \$32
4	At CO pre-saturation coverage (RH),	
5	$R_{RH, CH4} = (\kappa k_B T/h) \exp[-(\Delta G_{RH16}^{\neq} + \Delta G_{sum, before RH16})/RT][CO(g)]^8 [H_2(g)]^2 [CO_2(g)]^{-1}[*]^8$	Eq. S33
6	$R_{RH, CH3CH2OH/CH3CHO} = (\kappa k_B T/h) \exp[-(\Delta G_{RH18}^{*} + \Delta G_{sum, before RH18})/RT][CO(g)]^8[H_2(g)]^2[CO_2(g)]^{-1}[*]^8$	Eq. S34
7	$R_{RH, CH2CH2} = (\kappa k_B T/h) \exp[-(\Delta G_{RH25}^{\neq} + \Delta G_{sum, before RH25})/RT][CO(g)]^9[H_2(g)]^2[CO_2(g)]^{-2}[*]^8$	Eq. \$35
8	$R_{RH,HCCH} = (\kappa k_B T/h) \exp[-(\Delta G_{RH27}^{*} + \Delta G_{sum, \ before \ RH27})/RT][CO(g)]^9[H_2(g)]^{1.5}[CO_2(g)]^{-2}[*]^8$	Eq. \$36
9	$R_{RH,H2O} = (\kappa k_B T/h) \exp[-(\Delta G_{RH10}^{\neq} + \Delta G_{sum, \ before \ RH10})/RT][O^*]^2[CO(g)]^5[H_2(g)][*]^9$	Eq. S37
10	$R_{RH,CO2} = (\kappa k_B T/h) \exp[-(\Delta G_{RH13}^{\sharp} + \Delta G_{sum, \ before \ RH13})/RT][O^*][CO(g)]^6[^*]^7$	Eq. S38
11	The above discussion shows that the formation of CH₄, CH₃CHO, and CH₃CH₂OH is competitive with the first C-C bo	ond formation,

and the formation of CH_2CH_2 and HCCH is competitive with the second C-C bond formation at both lowest coverage and CO presaturation coverage.

We analyzed ratio of the rate constant, the ratio of the concentration of surface species, and the ratio of the reaction rate on the basis of our simplified micro-kinetic models. We assumed that the number of the sites of each slab is 7 (the maximum number of adsorbed CO is 7CO), the number of free sites [*] of each slab is 5 and 0, respectively, at the lowest coverage and CO presaturation coverage. At CO pre-saturation coverage, the site for H (0.5H₂) adsorption is not favorable thermodynamically and the probability of H adsorption is rather low under the proposed reaction conditions (423 K, 30 atm, and $p_{H2}/p_{CO}/p_{CH4}/p_{CO2}/p_{H2O} =$ 10/5/2/2/1).

For the removal of surface oxygen, only one surface oxygen is used in one slab. At the lowest coverage for one oxygen atom on the slab surface, stepwise addition of H atom has been used for the formation of H₂O, and addition of one CO molecule has been used for the formation for CO₂.

All concentrations of surface species (included surface free sites) are represented by the number per unit area (m²) and all concentrations of gaseous species are represented by the number per unit volume (m³). The results are shown in Table S5.

25

26

27

Table S5. A comparison between the reaction rate of chain growth and the reaction rate of products (CH₃CHO, CH₃CH₂OH, CH₂CH₂, and HCCH) on the basis of simplified micro-kinetics model.

products	Ratio of rate constant	Ratio of concentrations	Ratio of reaction rate			
At the lowest coverage						
[CH ₄]/[C2]	9.03×10 ⁻⁵	$1.33 \times 10^{5} ([H_2(g)]^{0.5} [CO(g)]^{-1} [*]^{-1})$	12.01			
[CH₃CHO]/[C2]	3.93	1.14×10 ⁻¹⁸ ([*] ⁻¹)	4.48×10 ⁻¹⁸			
$[CH_3CH_2OH]/[C2]$	3.93	1.14×10 ⁻¹⁸ ([*] ⁻¹)	4.48×10 ⁻¹⁸			

[CH ₂ CH ₂]/[C3]	46.26	$8.75 \times 10^{-40} ([CO(g)]^{-1}[H_2(g)]^{-0.5})$	4.05×10 ⁻³⁸				
[HCCH]/[C3]	181.96	8.75×10^{-40} ([CO(g)] ⁻¹ [H ₂ (g)] ^{-0.5})	4.05×10 ⁻³⁸				
[H ₂ O]/[CO ₂]	1.46×10 ⁴	3.07×10 ³⁷ ([O*][H ₂ (g)][*][CO(g)] ⁻¹)	4.47×10 ⁴¹				
CO pre-saturation coverage							
[CH ₄]/[C2]	80.01	0 ([H ₂ (g)] ^{0.5} [*])	0				
[CH₃CHO]/[C2]	0.44	0 ([H ₂ (g)] ^{0.5} [*])	0				
$[CH_3CH_2OH]/[C2]$	0.44	O ([H ₂ (g)] ^{0.5} [*])	0				
[CH ₂ CH ₂]/[C3]	0.03	0 ([*])	0				
[HCCH]/[C3]	2.96×10 ⁵	O ([*][H ₂ (g)] ^{-0.5})	0				
[H ₂ O]/[CO ₂]	105.22	$O([O^*][H_2(g)][^*]^2[CO(g)]^{-1})$	0				

2 At the lowest coverage, the ratio of the rate constant term of the formation CH₄ and C2 chain initiator is 9.03×10⁻⁵ and the 3 corresponding ratio of the concentration term is 1.33×10⁵. As a result, the rate of the formation of methane is greater than that of the formation of C2 initiator (12.01 to 1). Next, the ratio of the formation of CH₃CHO and CH₃CH₂OH vs. C2 initiator is 3.93 to 1 on 4 5 one hand, and one the other hand, the corresponding ratio of the concentration terms of surface species is 1.14×10⁻¹⁸. Totally, the rate of the formation of CH₃CHO and CH₃CH₂OH is much smaller than that of the formation of C2 initiator (4.48×10⁻¹⁸ to 1). The 6 7 reason for such huge rate difference comes from that fact that there are sufficient free sites for the dissociation reaction of RL9, 8 which is the RDS of the formation of C2 initiator. Then, the rate of the formation of CH₂CH₂ and HCCH is also much smaller than that of the formation of C3 initiator (4.05×10⁻³⁸ and 4.05×10⁻³⁸ to 1), and this is because that the second C-C bond formation is 9 10 more sensitive on the partial pressure of CO and H_2 , as indicated by the ratio of the concentration term, $[CO(g)]^{-1}[H_2(g)]^{-0.5}$. 11 Comparing all these ratios of the reaction rates, the formation of methane is more favored than that of the chain growth process 12 at the lowest coverage.

At CO pre-saturation coverage, the ratio of the rate-constant of methane formation and the formation of C2 initiator is 80 to 1. 13 14 On the basis of the ratio of the concentration term ($[H_2(g)]^{0.5}[*]$), the formation of methane needs one free site to adsorb 0.5H₂(g). 15 However, it is difficult to adsorb one H atom with adsorption-desorption equilibrium constant of 2.34×10⁻⁸ (as discussed in main text) and the probability of free sites on the surface is rather low (close to 0). Similar situations are found for the formation of 16 CH₂CH₂, HCCH, CH₃CHO, and CH₃CH₂OH. Due to high requirements of H content, hydrogenation reaction is remarkably inhibited. 17 Therefore, the chain growth process is more favored than the formation of CH₄, CH₃CHO, CH₂CH₂OH, CH₂CH₂, and HCCH, and this 18 is because that the chain growth process (CO-insertion mechanism for the formation of C2 and C3 initiator) needs less free sites 19 20 at CO pre-saturation coverage.

The removal of surface oxygen as H_2O and CO_2 is competitive at the lowest coverage and the CO pre-saturation coverage. At the lowest coverage, the ratio of the rate constant of the formation of H_2O and CO_2 is 1.46×10^4 to 1, and the formation of H_2O is more favored not only by the kinetic term but also by the concentration term. As a result, the rate of H_2O formation will be much greater than that of CO_2 formation (4.47×10^{41} to 1). At CO pre-saturation coverage, CO_2 formation is much more favored than that of H_2O despite the more favored kinetic preference of H_2O formation, and this is because that H_2O formation is highly dependent on the availability of free sites for H_2 adsorption, which are very limited at CO pre-saturation coverage, as indicated by the ratio of

- 1 concentration terms of H₂O/CO₂ formation ([O*][H₂(g)][*]²[CO(g)]⁻¹). Consequently, surface oxygen should be removed as CO₂
- 2 rather than as H₂O.
- 3

4 References

- 1 P. Zhao, Y. R. He, D. B. Cao, X. D. Wen, H. W. Xiang, Y. W. Li, J. G. Wang and H. J. Jiao, *Phys. Chem. Chem. Phys.*, 2015, **17**,19446 19456.
- 7 2 B. A. J. Lechner, X. F. Feng, P. J. Feibelman, J. I. Cerda and M. Salmeron, J. Phys. Chem. B, 2018, **122**, 649-656.
- 8 3 H. Pfnür, P. Feulner and D. Menzel, *J. Chem. Phys.*, 1983, **79**, 4613-4623.
- 9 4 P. Zhao, Y. R. He, D. B. Cao, H. W. Xiang, H. J. Jiao, Y. Yang, Y. W. Li and X. D. Wen, *J. Phys. Chem. C*, 2019, **123**, 6508-6515.
- 10