Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

The atomic defects on the (104) and (110) surfaces of the MgCl₂-supported Ziegler-Natta Catalyst: a periodic DFT study

Xing Guo,^a Yunqi Shao,^a Jun Luo,^a Zhen Liu*^a and Boping Liu*^b

^aSchool of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

^bCollege of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

*Corresponding author:

Zhen Liu, Email: liuzhen@ecust.edu.cn

Boping Liu, Email: boping@scau.edu.cn

Surfaces	TiCI ₄	Ti center
(110)	· · · · · · · · · · · · · · · · · · ·	-
1110	-0.22	1.74
D110-1	-0.92	1.60
D110-2	-1.64	1.34
D110-3	-0.21	1.73
(104)		
104	-0.10	1.70
D104-1	-0.84	1.57
D104-2	-1.55	1.14
D104-3	-0.02	1.71

Table S1. Bader charges of ${\rm TiCI_4}$ molecule and Ti center.

Table S2. Adsorption energies (kcal mol $^{\text{-}1}$) for the TiCl $_4$ on the C110 and C104 surfaces.

Surfaces	TiCl ₄
C110	-14.2
C104	-26.8

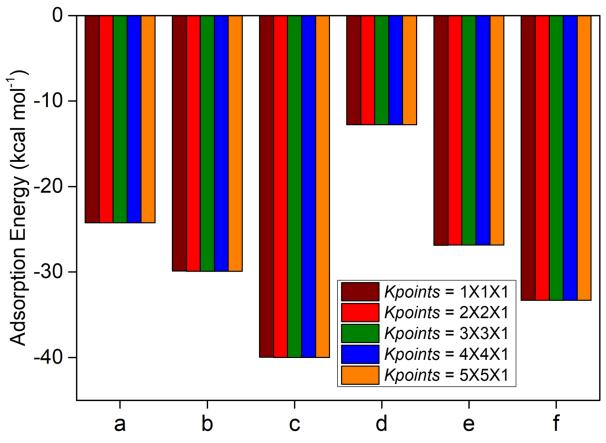


Fig. S1 Adsorption energy for (a) $TiCl_4/MgCl_2(110)$, (b) $EB/MgCl_2(110)$, (c) $DMDOMe/MgCl_2(110)$, (d) $TiCl_4/MgCl_2(104)$, (e) $EB/MgCl_2(104)$, and (f) $DMDOMe/MgCl_2(104)$ under different k point meshes.

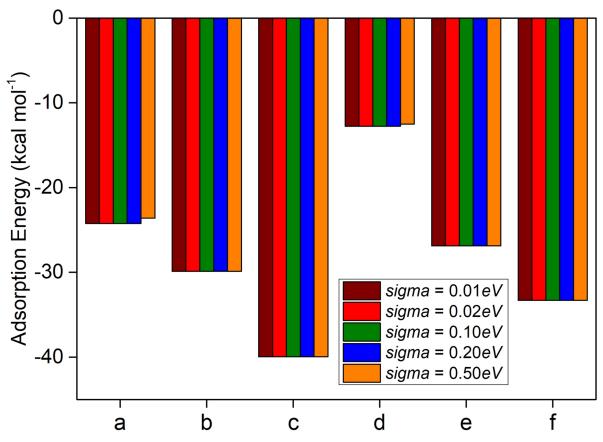


Fig. S2 Adsorption energy for (a) $TiCl_4/MgCl_2(110)$, (b) $EB/MgCl_2(110)$, (c) $DMDOMe/MgCl_2(110)$, (d) $TiCl_4/MgCl_2(104)$, (e) $EB/MgCl_2(104)$, and (f) $DMDOMe/MgCl_2(104)$ under different smearing methods.

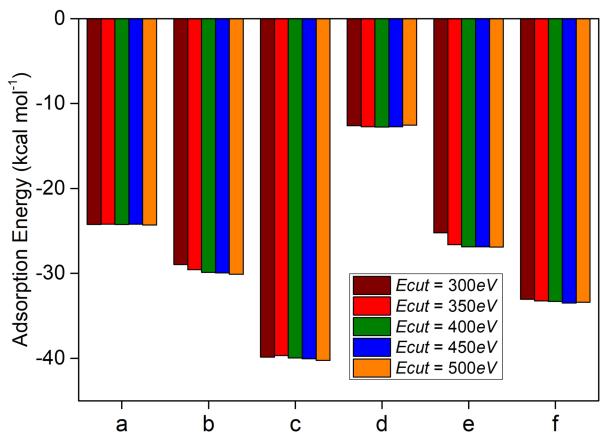


Fig. S3 Adsorption energy for (a) $TiCl_4/MgCl_2(110)$, (b) $EB/MgCl_2(110)$, (c) $DMDOMe/MgCl_2(110)$, (d) $TiCl_4/MgCl_2(104)$, (e) $EB/MgCl_2(104)$, and (f) $DMDOMe/MgCl_2(104)$ under different cutoff energies.

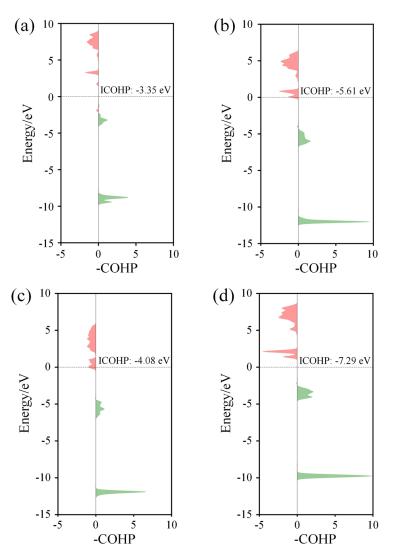


Fig. S4 The crystal orbital Hamilton population (COHP) analysis of the (Ti-Cl)₅ bond in (a) the I104 surface, (b) the D104-1 surface, (c) the D104-2 surface, and (d) the D104-3 surface. The Colour code for the COHP curves is as follows: green, bonding contributions; and red, antibonding contributions.

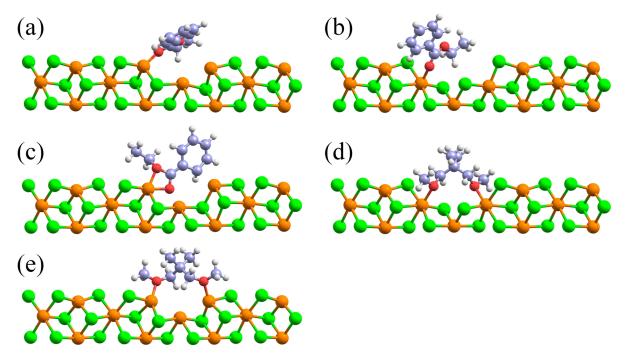


Fig. S5 The binding modes for EB and DMDOMe on: (a), (c), and (e) the D110-2 surface, and (b), and (d) the D110-3 surface. Colour code: orange, Mg; green, Cl of the MgCl₂; blue, C; red, O; and light gray, H. Only the relaxed atoms are shown for clarity.

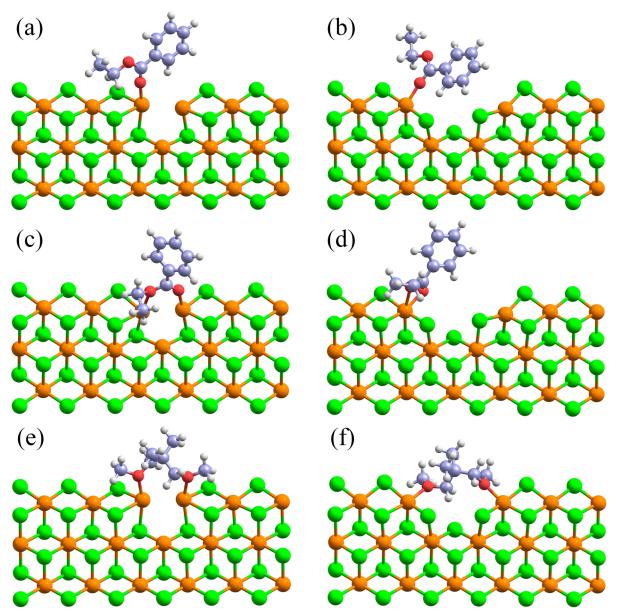


Fig. S6 The binding modes for EB and DMDOMe on: (a), (c), and (e) the D104-2 surface, and (b), (d), and (f) the D104-3 surface. Colour code: as mentioned above. Only the relaxed atoms are shown for clarity.

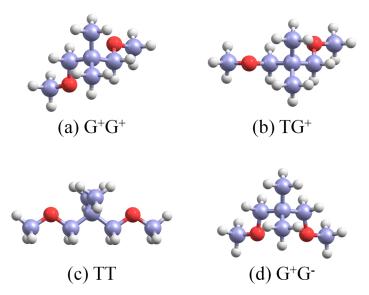


Fig. S7 Optimized structures of DMDOMe at four energy minima. Colour code: as mentioned above.

The conformational analysis of 2,2-methyl-1,3-dimethoxypropane (DMDOMe) shows that DMDOMe has four conformational minima corresponding to (G^+G^+) , (TG^+) , (TT) and (G^+G^-) . The related conformational energies of the four molecule structures in Fig. S8 are 0.0 kcal mol⁻¹, 0.5 kcal mol⁻¹, 1.3 kcal mol⁻¹, 3.6 kcal mol⁻¹, respectively.

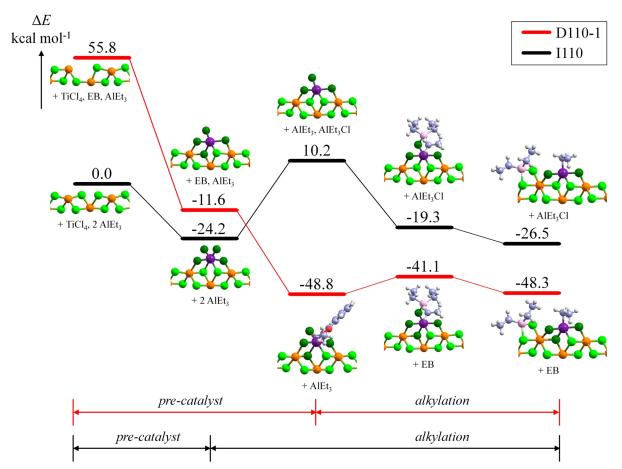


Fig. S8 The energy profile for a comparative study of forming the DEAC coordinated Ti active site on the I110 and D110-1 surfaces. Colour code: violet, Ti; dark green, Cl of the TiCl₄; pink, Al; and others as mentioned above.

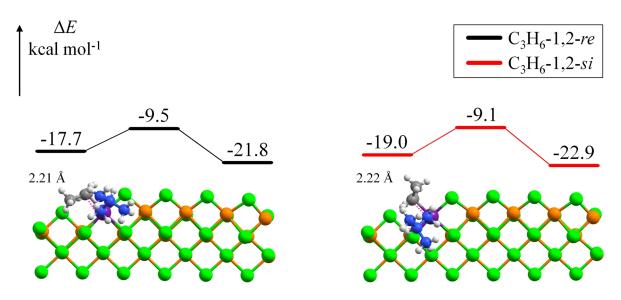


Fig. S9 The energy profile of propylene 1,2-insertion into the Ti-*i*Bu chain on the C104 surface and top view of transition states. Colour code: dark blue, C of the growing chain; dark gray, C of propylene; and others as mentioned above.