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Supporting Information

Experimental section

Chemicals and materials 

Cobalt oxide (AR) and sodium hydroxide (AR, 96%) were supplied by Aladdin. 

Palladium (Ⅱ) chloride (Pd: 59.86%) was purchased from Kunming Boren Precious 

Metals Co., Ltd. Sodium chloride (AR) and sodium borohydride (AR) were supplied 

by Ke Long chemical Reagent Factory. Borane-ammonia complex (97%) was 

purchased from Innochem. All the reagents were used as received without further 

purification.

Characterization

Transmission electron microscopy (TEM) with a JEOL JEM-2100F (JEOL) was 

used to characterize the morphology and particle size of samples. The crystal structure 

for samples were detected by X-ray diffraction (XRD) on a Regaku D/XMax-2500 

diffractometer under Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was 

used to determine the composition and valence states of samples on a Thermo 

ESCALAB 250 Axis Ultra spectrometer. N2 sorption measurement was carried out on 

a Micromeritics ASAP 2460 and Brunauer–Emmett–Teller (BET) method was used to 

calculate the surface area of samples. The Pd loadings of the catalysts were measured 

via inductively coupled plasma optical emission spectrometry (ICP-OES, PerkinElmer 

Optima 8000 equipment).
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Computational Method

Equation S1 Calculation formula of TOF values.

TOF =
n(H2)

n(Pd)𝑡
(1)

where n (H2) is 40% of the total hydrogen moles of the AB generated hydrogen, n 

(Pd) is the number of moles in Pd/Co3O4-SB, and t is the corresponding n (H2) time.

According the method reported by Qing-Yuan Bi et al [1] (Equation S2), the Pd 

dispersion was calculated based on an assumption of a quasi-hemispherical model of 

Pd particle. TEM image showed that the average particle size of Pd was 2.11 nm (Fig. 

3c). Therefore, the Pd dispersion on the catalyst surface was calculated to be 62%. In 

general, an error of ±10% was established for the results.

Equation S2 Calculation formula of Pd dispersion.

 = 
                                               𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 =  

𝑁𝑆

𝑁𝑇

𝑆𝑘
𝑛𝑃𝑑𝑁𝐴

(2)

The overall surface area of Pd particles: 
𝑆 = 2𝜋(

𝑑𝑃𝑑

2
)2𝑁1

The number of Pd particles:  = 𝑁1

𝑚𝑃𝑑

2
3

𝜋 (
𝑑𝑃𝑑

2
)3 𝜌𝑃𝑑

The moles of pd: n = 

𝑚𝑃𝑑

𝑀𝑃𝑑

NS = total number of surfaces Pd atoms

NT = total number of Pd atoms

The Pd atom density (k) = 1 × 1017 m–2

ρ = 12.02 g cm-3   NA = 6.02*1023 mol-1   dPd = 2.11nm
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Fig. S1. SEM images of Pd/Co3O4-AB. 
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Fig. S2. Representative Pd on the surface of Co3O4-SB are highlighted by the red 

circles.



S5

Fig. S3. Energy dispersive spectroscopy (EDS) image of Pd/Co3O4-SB.
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Fig. S4. N2 adsorption–desorption isotherms and (inset) pore diameter distribution of 

Co3O4-SB.
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Fig. S5. XPS survey spectra for (a) Pd/Co3O4-SB, (b) Pd/Co3O4-SB-d3rd and (c) 

Pd/Co3O4-SB-d20th.
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Fig. S6. High-resolution XPS spectra for (a) Co 2p and (b) O 1s of Co3O4.
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Fig. S7. H2 evolution curves by catalysts of Co3O4 and Co3O4-SB.
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Fig. S8. NH3 quantification using indophenol blue method. (a) The UV-vis absorption 

spectra and (b) corresponding calibration curves for a series of standard concentrations 

of NH4+ solution.
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Fig. S9. (a) H2 evolution curves by the catalysts in durability experiments of 1st 

(Pd/Co3O4-SB), 2rd and the 3rd (Pd/Co3O4-SB-d3rd) and (b) the corresponding histogram 

of TOFs.
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Fig. S10. (a) H2 evolution curves conducted by Pd/Co3O4-SB-d3rd with different 

temperatures, and (b) the Arrhenius plot. 
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Fig. S11. (a) The reusability tests for AB hydrolysis catalyzed by Pd/Co3O4-SB and (b) 

the corresponding histogram of catalytic activity.
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Fig. S12. (a) Elemental mapping of Pd/Co3O4-SB-d3rd correspond to (a1) Pd, (a2) Co, 

(a3) O and (a4) B maps, respectively.
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Fig. S13. SEM images of Pd/Co3O4-SB-r3rd.
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Fig. S14. SEM images of (a) Co3O4-SB-d3rd and (b) Pd/Co3O4-AB-d3rd. 
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Fig. S15. High-resolution XPS spectra for Pd 3d of (a) Pd/Co3O4-SB-d3rd and (b) 

Pd/Co3O4-SB-d20th.
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Fig. S16. Photos of the (a) Pd/Co3O4-SB and (b) Pd/Co3O4-SB-d3rd in the presence of 

external magnet
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Table S1. The Co2p XPS information in Co3O4, Pd/Co3O4-SB, Pd/Co3O4-SB-d3rd and 

Pd/Co3O4-SB-d20th.

Samples Co2+ and Co3+ 2p3/2 peak positions (eV) Co2+/Co3+

Co3O4 781.20 and 779.62 0.908

Pd/Co3O4-SB 780. 59 and 779.16 0.926

Pd/Co3O4-SB-d3rd 780.88 and 779.67 1.16

Pd/Co3O4-SB-d20th 781.57 and 780.11 1.50
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Table S2. The O1s XPS information in Co3O4, Pd/Co3O4-SB, Pd/Co3O4-SB-d3rd and 

Pd/Co3O4-SB-d20th.

Samples lattice oxygen (Ol) and defective oxygen 

(Od) peak positions (eV)

Od/Ol

Co3O4 529.70 and 531.20 0.412

Pd/Co3O4-SB 529.29 and 530.73 1.21

Pd/Co3O4-SB-d3rd 530.18 and 531.15 1.56

Pd/Co3O4-SB-d20th 529.98 and 530.90 3.11
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Table S3. Comparison results of previous Pd-based catalysts for AB hydrolysis. 

Entry Catalysts
TOF 

(min-1)

Ea (kJ 

mol−1)
Cycles

Remained 

activity 

(%)

References

1 RGO/Pd 6.25 51 5 65 [2]

2 Pd/graphene aerogel 9.7 30.82 6 - [3]

3 Pd0/PDA–Fe3O4 14.5 65 10 100 [4]

4 Pd/PPy 21.1 33.5 5 89 [5]

5 Pd NPs/CS 24.76 32.65 11 - [6]

6 Pd(0)/GO-ILCS 25.6 38 6 - [7]

7 RGO@Pd 26.3 40 10 95 [8]

8 Pd/CGP-GO-Fe3O4 27.4 36.5 8 - [9]

9 Pd/Fe3O4@SiO2-PC 28.4 47.3 9 - [10]

10 Pd0/CeO2 29 68 5 47 [11]

11 RGO-Cu75Pd25 29.9 45 3 - [12]

12 Pd@PMOs 30.08 34.9 5 75 [13]

13 Pd NPs/CS-rGO 42.5 39.02 4 - [14]

14 Pd@MIL-101 45 - 5 - [15]

15 Pd/α-LDH 49.5 20.56 5 - [16]

16 mpg-C3N4/Pd 66.3 53.6 5 75 [17]

17 Pd/GNS 101.5 46.5 5 74.6 [18]
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18 Pd/MCN 125 57 5 - [19]

19 Pd0/PDA–CoFe2O4 175 65 10 100 [20]

20 Ni3-Pd7/CS 182 35.32 5 - [21]

21
Pd(0)/SiO2–

CoFe2O4

254 52 10 78 [22]

22 Pd1/Co3O4 1470 - 15 100 [23]

23 Pd/Co3O4-SB 781 61.45 20 130 This work

24 Pd/Co3O4-SB-d3rd 1228 64.44 - - This work
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