Supporting Information

Metallic WN Plasmonic Fabricated g-C₃N₄ Significantly Steered Photocatalytic Hydrogen Evolution under Visible and Near-Infrared Light

Warisha Tahir, ^a Sami Ullah, ^b Ikram Ullah, ^a Jing-Han Li, ^a Cong Ling, ^a Xiao-Jie Lu, ^a Xiao-Jun Qian, ^c Gang Wang, ^{c*} Yueyin Pan, ^{c*} and An-Wu Xu ^{a*}

Material	Synthetic Method	Co-Catalyst	$H_2(\mu mol h^{-1})$	Ref.
g-C ₃ N ₄ -TiO ₂	Photodeposition,	TEOA/3 wt%	79.28	[1]
	Hydrothermal	Pt		
O-g-C ₃ N ₄ -TiO ₂	Photo-deposition,	TEOA/3 wt%	29.35	[2]
	Hydrothermal	Pt		
g-C ₃ N ₄ -TiO ₂	Electro-spinning,	TEOA/1wt%	1.50	[3]
	Heat treatment	Au, Ag or Pt		
g-C ₃ N ₄ -NPBIm	Hydrothermal	TEOA/1 wt%	46.97	[4]
		Pt		
g-C ₃ N ₄ -CoO	Hydrothermal	TEOA/3 wt%	65.35	[5]
		Pt		
g-C ₃ N ₄ -	Hydrothermal	TEOA/1wt%	18.61	[6]
CoFe ₂ O ₃		Pt		
g-C ₃ N ₄ -WN	Hydrothermal	TEOA/1	72.15	Our
		wt% Pt		work

Table S1. Comparison of photocatalytic hydrogen evolution rate with previous literature.

 Table S1. Fitting parameters of EIS results

Samples	R _s	R _{ct}
g-C ₃ N ₄ nanosheets	23.2	1492
WN/CN-1 photocatalyst	14.8	834

Figure S1. XPS spectrum of WN/CN-1 photocatalyst.

Figure S3. The Kubelka-Munk energy band gap graph of $g-C_3N_4$ (a) and WN/CN-1

Figure S5. UPS spectrum of WN NPs.

Figure S6. Cyclic voltammetry (CV) measurements of WN NPs.(b).

Figure S7. SEM images of $g-C_3N_4$ (a), WN/CN-1(b) and WN NPs (c-e).

Figure S8. Nitrogen adsorption-desorption isotherm of g-C₃N₄ and WN/CN-1.

Figure S9. H_2 evolution comparison of a series of WN/CN-x samples with different contents of WN NPs and g-C₃N₄ under visible region.

Figure S10. H_2 evolution comparison of a series of WN/CN-x samples with different sacrificial agents.

Figure S11. XRD spectra of WN/CN-1 composite before and after the photocatalytic experiment.

References

1. M. A. Alcudia-Ramos, M. A. Fuentez-Torres, F. Ortiz-Chi, C. G. Espinosa-González, N. Hernández-Como, D. S. García-Zaleta, M. K. Kesarla, J. G. Torres-Torres, V. Collins-Martínez, S. Godavarthi, *Ceram. Int.*, 2020, *46*, 38-45.

2. R. Zhong, Z. Zhang, H. Yi, L. Zeng, C. Tang, L. Huang, M. Gu, *Appl. Catal. B: Environ.*, 2018, 237, 1130-1138.

3. X. Wei, C. Shao, X. Li, N. Lu, K. Wang, Z. Zhang, Y. Liu, *Nanoscale*, 2016, 8, 11034.

4. M. Kombo, H.-B. Chong, L.-B. Ma, S. Sahar, X.-X. Fang, T. Zhao, C. Ling, X.-J. Lu, A.-W. Xu, *ACS Appl. Nano Mater.*, 2020, *3*, 10659-10667.

5. Z. Mao, J. Chen, Y. Yang, D. Wang, L. Bie, B. D. Fahlman, ACS Appl. Mater. Inter., 2017, 9, 12427-12435.

J. Chen, D. Zhao, Z. Diao, M. Wang, S. Shen, Sci. Bull., 2016, 61, 292-301.