Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for

Covalent organic frameworks editing for efficient metallaphotoredox catalytic

carbon-oxygen cross coupling of aryl halides with alcohols

Di Meng, ab Jing Xue, ab Yufan Zhang, ab Tianjiao Liu, ab Chuncheng Chen, ab Wenjing Song *ab and Jincai Zhao ab

^a Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China

^b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

* Corresponding author. Tel: +86-10-82615942; Fax: +86-10-82612075; E-mail: wsongunc@iccas.ac.cn

Supplementary Data

Figure S1. FTIR (ATR) spectrum of TB-Ph₁ and corresponding monomers.

Figure S2. ¹³C cross polarization total suppression of spinning sidebands nuclear magnetic resonance (CPTOSS-NMR) spectra of TB-Ph₁.

Figure S3. Powder X-ray diffraction (PXRD) characterization of TB-Ph₁ (khaki) with the major reflection peaks assigned, Pawley refined modelling profile (cyan dashed line), their difference pattern (grey line) and simulated pattern (black line). Insets: enlarged patterns in $2\theta = 2-10^{\circ}$ of the corresponding spectra.

Figure S4. TEM images of (a) $TT-Ph_1$, (b) $TT-Ph_2$, (c) $TT-Ph_3$ and (d) $TB-Ph_1$.

Figure S5. Nitrogen adsorption isotherms of (a) TT-Ph₁ ($A_{BET} = 7.0 \text{ m}^2 \text{ g}^{-1}$), (b) TT-Ph₂ ($A_{BET} = 22.4 \text{ m}^2 \text{ g}^{-1}$), (c) TT-Ph₃ ($A_{BET} = 589.5 \text{ m}^2 \text{ g}^{-1}$) and (d) TB-Ph₁ ($A_{BET} = 27.3 \text{ m}^2 \text{ g}^{-1}$) measured at 77 K.

Figure S6. Thermogravimetric analysis (TGA) of TT-Ph₁₋₃ and TB-Ph₁.

Figure S7. UV-Vis absorption spectra of (a)TT-Ph₁, (b)TT-Ph₂, (c)TT-Ph₃ and (d) TB-Ph₁. Band gaps extracted by Kubelka-Munk function are shown in the inserts.

Figure S8. Mott–Schottky (M-S) plots of COFs (coated on FTO). (a) TT-Ph₁ (b) TT-Ph₂, (c) TT-Ph₃ (b) TB-Ph₁. The intercept of M-S plot is the flat band potential of each COFs, which was taken as the conduction band value in the empirical calculation of valence band potentials ($E_{VB} = E_g + E_{CB}$).

Figure S9. GC yield of 4-methoxybenzonitrile at given reaction time. The curves were fit by 1st exponential decay to give the pseudo first order rate constants as 0.25 h⁻¹ of TT-Ph₁, 0.44 h⁻¹ of TT-Ph₂ and 0.58 h⁻¹ of TT-Ph₃.

Figure S10. Yield of 4-methoxybenzonitrile under 6h of 455 nm LED irradiation.

Figure S11. Monitoring of solution temperature under standard conditions at a room temperature of 26 °C (photoreactor was about 33 °C).

Figure S12. PXRD patterns comparison of TT-Ph₃ before and after reaction.

Figure S13. FTIR spectra comparison of $TT-Ph_3$ before and after reaction.

Figure S14. TEM images of COFs recycled after 5 h reaction (a) TT-Ph₁, (b) TT-Ph₂, (c) TT-Ph₃ and (d) TB-Ph₁.

Figure S15. TEM and EDX mapping of TT-Ph₃ before reaction. Mass of the elements: C 96.73 %, N 2.34 %, O 0.93%, Ni not detected.

Figure S16. TEM and EDX mapping of TT-Ph₃ after reaction. Mass of the elements: C 80.70 %, N 2.31 %, O 16.89%, Ni 0.10%.

Figure S17. XPS spectra of nickel on TT-Ph₃ after photoreaction.

Figure S18. GC yield of 4-methoxybenzonitrile (5 h reaction) in five consecutive runs with recovered TT-Ph₃.

Figure S19. Electrochemical impedance spectroscopy (EIS) of TT-Ph₁₋₃ and TB-Ph₁ (0.2 M Na₂SO₄ (pH=6.8) as electrolyte at 0.7 $V_{Ag/AgCl}$) under 420nm LED irradiation.

Table S1. Pawley refinement lattices parameters.

COFs	а	b	с	α	β	γ	\mathbf{R}_{wp}	R _p
TT-Ph ₁	37.63 Å	37.11 Å	3.39 Å	71.67°	105.62°	122.14°	2.71%	2.21%
TT-Ph ₂	44.58 Å	44.61 Å	3.54 Å	85.52°	81.74°	119.97°	3.33%	2.71%
TT-Ph ₃	51.89 Å	51.53 Å	3.51 Å	91.72°	89.30°	118.97°	4.80%	3.90%
$TB-Ph_1$	37.81 Å	37.92 Å	3.63 Å	79.13°	108.87°	120.03°	2.85%	2.26%

Table S2. GC yield of 4-methoxybenzonitrile with different equivalent of methanol under standard condition.

No.	MeOH (equiv)	Conversion (%)	Yield of 1 (%)	Yield of 11 (%)
0 ^a	20	94	94	n. d.
1	0	22.8	0	8.4
2	1	38.3	22.1	4.5
3	2	48.9	38.5	2.7
4	5	72.6	63.7	1.2
5ª	10	79.5	79.5	n. d.

^a Conversion is reported due to the difficulty in obtaining reasonable yields. Under this condition, 1 is the sole detected

product (in addition to the residual substrates).

Table S3. GC yield of 4-methoxybenzonitrile with different amount of Ni under standard condition.

//	N 1 0-	0.5 g·L ⁻¹ TT-Ph ₃ -0.5 % NiCl ₂ ·6H ₂ O 1:1 bpy	N
Br	⁺ MeOH ⁻	1.8 equiv. quinuclidine 420 nm LED 10 mL DMAc, Ar, 5h	-
0.1 M	20 equiv.		
Entry	Ni (equiv)	Conversion (%)	Yield (%)
0 ^a	0.5%	94	94
1	0%	10.3	0
2	0.02%	25.1	21.8
3	0.05%	53.6	48.4
4 ^a	0.1%	62.9	62.9
5 ^a	0.25%	76.5	76.5

^a Conversion is reported due to the difficulty in obtaining reasonable yields. Under this condition, **1** is the sole detected product (in addition to the residual substrates).

Table S4. GC yield of 4-methoxybenzonitrile with different amount of quinuclidine under standard condition.

	$N = \begin{array}{c} 0.5 \text{ g}^{-1} \\ 0.5\% \text{ NiCl}_2 \\ 0.00 \text{ l}^{-2} \end{array}$	L^{-1} TT-Ph ₃ :6H ₂ O 0.5% bpy.	N ///
	$H = \frac{0.09-1.8 \text{ equ}}{10 \text{ mL DN}}$ Br 0.1 M 20 equiv.	In LED MAc, Ar, 5h	
Entry	Quinuclidine (equiv)	Conversion (%)	Yield (%)
0 ^a	1.8	94	94
1 ^a	0.9	67.6	67.6
2	0.36	36.1	34.2
3	0.18	17.8	15.8
4	0.09	8.7	8.2

^a Conversion is reported due to the difficulty in obtaining reasonable yields. Under this condition, **1** is the sole detected product (in addition to the residual substrates).

Table S5. GC yield of 4-methoxybenzonitrile with other condition variations.

	$\begin{array}{c} N \\ $	
No.	Condition variations	Yield (%) of 1
1	0.2 g L-1 TT-Ph ₃	56
2ª	1 g L-1 TT-Ph ₃	70.3
3	MeOH:DMAc 1:1 as solvent	n. d.
4	DMF as solvent	63
5	CH ₃ CN as solvent	n. d.
6 ^b	No Nickel salt	n. d.

 $^{\rm a}$ Yield completed 36.2 % in 2 h. $^{\rm b}$ TT-Ph_3 used once and recycled.

Table S6.GC Yield of C-O coupling product 4-hydroxybenzonitrile catalyzed by various COFs under standard condition.

м + H ₂ O		N (+ H ₂ O -	$0.5 \text{ g} \cdot \text{L}^{-1} \text{ COFs}$ $0.5\% \text{ NiCl}_2 \cdot 6\text{H}_2\text{O} \ 0.5\% \text{ bpy}$ $1.8 \text{ equiv. quinuclidine}$		
Br 0.1	_/ M	20 equiv.	420 nm LE 10 mL DMAc, A	Ar, 10h HO	/
-	No.	COFs	Conv. (%)	Y1eld. (%)	
	1	$TT-Ph_1$	31.3	28.0	
	2	TT-Ph ₂	25.5	23.5	
	3	TT-Ph ₃	68.8	61.7	
	4	TB-Ph ₁	28.8	25.6	

Table S7 GC yield of 4-methoxybenzonitrile at different temperatures with TT-Ph₃ at standard conditions.

Table S8. Amount of Ni deposited on different COFs after reaction via ICP-OES analysis.

Entry	COFs	Ni(wt.%)	$Ni_{deposited}/Ni_{added}$ (%)	$Ni_{residual in solution}/Ni_{added}$ (%)
1	$TT-Ph_1$	0.14	2.39	88.3
2	TT-Ph ₂	0.07	1.14	90.5
3	TT-Ph ₃	0.02	0.30	94.1
4	$TB-Ph_1$	0.06	0.99	84.6

Product Analysis

1. 4-Methoxybenzonitrile (white solid, 0.1195 g, isolated yield: 90%)

¹H NMR (300 MHz, Chloroform-*d*) δ 7.65 – 7.54 (m, 2H), 7.01 – 6.90 (m, 2H), 3.86 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 162.86, 134.00, 119.26, 114.77, 103.96, 55.57.

¹H NMR (300 MHz, Chloroform-d) δ 8.05 – 7.96 (m, 2H), 6.96 – 6.87 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 166.37, 163.25, 131.52, 122.93, 113.53, 60.61, 55.36, 14.37.

3. 4-Methoxybenzophenone (white solid, 0.1879 g, isolated yield: 89%)

7.39 (m, 2H), 7.00 – 6.89 (m, 2H), 3.86 (s, 3H).
¹³C NMR (75 MHz, Chloroform-*d*) δ 195.53, 163.25, 138.29, 132.57, 131.92, 130.12, 129.73, 128.22, 113.59, 55.50.

4. 4'-Methoxyacetophenone (white solid, 0.1216 g, isolated yield: 81%)

¹H NMR (300 MHz, Chloroform-*d*) δ 8.00 – 7.89 (m, 1H), 6.99 – 6.88 (m, 1H), 3.87 (s, 2H), 2.56 (s, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 196.82, 163.49, 130.61, 130.35, 113.69, 55.48, 26.37.

5. 4-Methoxybenzaldehyde (transparency liquid, 0.1059 g, isolated yield: 78%)

¹H NMR (300 MHz, Chloroform-*d*) δ 9.88 (s, 1H), 7.89 – 7.78 (m, 2H), 7.06 – 6.92 (m, 2H), 3.88 (s, 3H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 190.84, 164.62, 131.98, 129.93, 114.32, 55.58.

6. 5-Methoxypyridine-2-carbonitrile (white solid, 0.0686 g, isolated yield: 62%)

¹H NMR (300 MHz, Chloroform-*d*) δ 8.42 – 8.35 (m, 1H), 7.66 (dd, *J* = 8.6, 0.7 Hz, 1H), 7.24 (d, *J* = 2.9 Hz, 1H), 3.94 (s, 3H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 157.89, 140.16, 129.58, 125.33, 119.76, 117.52, 55.98.

¹H NMR (300 MHz, Chloroform-*d*) δ 7.64 – 7.53 (m, 2H), 7.45 – 7.30 (m, 5H), 7.07 – 6.97 (m, 2H), 5.11 (s, 2H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 161.98, 135.71, 134.05, 128.80, 128.45, 127.50, 119.20, 115.61, 104.24, 70.30.

8. 4-(2,2,2-Trifluoroethoxy)benzonitrile (pale-yellow solid, 0.1776 g, isolated yield: 88%)

¹H NMR (300 MHz, Chloroform-*d*) δ 7.70 – 7.60 (m, 2H), 7.07 – 6.98 (m, 2H), 4.41 (q, *J* = 7.8 Hz, 2H). ¹³C NMR (75 MHz, Chloroform-*d*) δ 160.24, 134.26, 124.72, 118.57, 115.52, 106.16, 66.27 – 64.83.

9. 4-Ethoxybenzonitrile (white solid, 0.1300 g, isolated yield: 89%)

1.44 (t, J = 7.0 Hz, 3H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 162.27, 133.98, 119.34, 115.16, 103.68, 63.94, 14.58.

10. 4-Isopropoxybenzonitrile (white solid, 0.0994 g, isolated yield: 62%)

1.36 (d, *J* = 6.1 Hz, 6H).

¹³C NMR (75 MHz, Chloroform-*d*) δ 161.36, 133.97, 119.37, 116.06, 103.28, 70.38, 21.78.