Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2023

Accelerated H₂ activation over Pt/M-ZrO₂ for the reductive amination of levulinic acid esters under benign conditions

Kanika Saini, ^[a] Sahil Kumar, ^[a] Ramandeep Kaur, ^[b] Srinivasarao Arulananda Babu^[b], and Shunmugavel Saravanamurugan*^[a]

^a Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing,

Sector-81 (Knowledge City), Mohali – 140 306, Punjab, India. Email: saravana@ciab.res.in

^b Department of Chemical Sciences, Indian Institute of Science Education and Research

(IISER) Mohali, Manauli P.O., Sector 81, SAS Nagar, Mohali, Knowledge City, Punjab 140306, India.

Entry	Catalyst	MLevu	OMP	OMP
		Conversion (%)	Yield (%)	Selectivity (%)
1	$Ru/M-ZrO_2$	97.9	18.0	18.4
2	Ir/M - ZrO_2	98.0	32.1	32.8
3	Ni/M-ZrO ₂	89.1	6.2	6.9
4	$Mn/M-ZrO_2$	95.5	22.8	23.8
5	Ce/M-ZrO ₂	94.9	10.2	10.8
6	Co/M-ZrO ₂	93.7	10.4	11.1
7	Fe/M-ZrO ₂	96.7	8.9	9.2

Table S1. Catalytic reductive amination of MLevu to OMP with metals supported on ZrO_2 .

Reaction Conditions: 1 mmol MLevu, mole_{substrate:Pt} = 81, 2 mmol octylamine, 19 ml methanol, 120 °C, 30 bar H₂, 4 h.

Table S2.	Physicochemical	l properties of p	parent and Pt incorporate	d ZrO ₂ catalysts.
-----------	-----------------	-------------------	---------------------------	-------------------------------

Entry	Catalyst	Surface area	Pore size	Pore volume
		(m²/g) ^a	(nm) ^b	(cm ³ /g) ^c
1	M-ZrO ₂	105	17.5	0.423
2	Pt-M-ZrO ₂	93	17.4	0.393
3	T-ZrO ₂	45	3.4	0.045
4	Pt-T-ZrO ₂	6	3.8	0.006

^acalculated from the BET method, ^bcalculated from the BJH method, ^cobtained from the amount of N_2 adsorbed at a relative pressure of around 0.99.

	O-1s			Pt-4f		
Catalyst	Gaussian peak	Peak Position (eV)	Area (%)	Gaussian peak	Peak Position (eV)	Area (%)
	O_L	529.7	96.8	Pt ⁰		
M-ZrO ₂	O_V			Pt^{2+}		
	O _A	532.4	3.1	Pt^{4+}		
	OL	529.8	90.1	Pt ⁰		
T-ZrO ₂	O_V			Pt^{2+}		
	O _A	531.9	9.8	Pt ⁴⁺		
Pt/M_	OL	529.8	94.5	Pt ⁰	71.8, 75.5	25.5
ZrO ₂	O_V	531.8	2.5	Pt^{2+}	73.5, 76.2	37.7
	O _A	532.6	2.8	Pt ⁴⁺	74.6, 77.9	36.7
Reduced	OL	529.5	82.0	Pt ⁰	71.4, 75.3	46.5
Pt/M- ZrO ₂	O_V	531.3	15.3	Pt^{2+}	72.8, 76.3	41.3
	O _A	532.7	2.5	Pt ⁴⁺	74.2, 78.8	12.1
D+/T	O _L	529.8	90.1	Pt ⁰	71.3, 74.4	79.0
Pt/1- ZrO ₂	O_V			Pt^{2+}	73.1, 77.2	6.0
	O _A	532.1	9.8	Pt ⁴⁺	75.4, 78.1	14.8

Table S3. XPS data of parent and Pt incorporated ZrO_2 catalysts.

Table S4: The influence of platinum loading on the product yield

Entry	Catalyst	MLevu	OMP	OMP
	Catalyst	Conversion (%)	Yield (%)	Selectivity (%)
1	$1 wt\% Pt/M-ZrO_2$	58.2	3.2	5.5
2	$2wt\% Pt/M-ZrO_2$	54.4	21.1	38.8
3	3wt% Pt/M-ZrO ₂	63.7	27.5	43.2
4	4wt% Pt/M-ZrO ₂	67.9	19.3	28.5

Reaction condition:1 mmol MLevu, mole_{substrate:Pt} = 81, 2 mmol octylamine, 19 ml methanol, 30 °C, 30 bar H₂, 30 min.

Figure S1. HR-TEM images (a-c), TEM-EDX elemental mapping(d,e) and SAED (f) of M-ZrO₂.

Figure S2. HR-TEM images (insert:SAED) (a, b) and TEM-EDX elemental mapping (c-e) of Pt/T-ZrO₂

Figure S3. XPS spectra of O 1s of a) M-ZrO₂, b) Pt/M-ZrO₂, c) Reduced Pt/M-ZrO₂, d)T-ZrO₂, e) Pt/T-ZrO₂ after deconvolution.

Figure S4. XPS spectra of Pt 4f of Pt/T-ZrO₂ after deconvolution.

Figure S5. NH₃-TPD profile of parent and Pt incorporated ZrO₂ catalysts.

Figure S6. CO₂-TPD profile of parent and Pt incorporated ZrO₂ catalysts.

Figure S7. H₂-TPD profile of reduced and nonreduced Pt/ZrO₂ catalysts (Pt/M-ZrO₂-300: reduced at 300 °C; Pt/M-ZrO₂-450: reduced at 450 °C).

Figure S8. XRD pattern of 4 wt% Pt/M-ZrO₂ catalyst.

Figure S9. XRD pattern of fresh and spent (after four runs) Pt/M-ZrO₂ catalyst.

Figure S10. GC chromatogram and MS spectra of the reaction mixture. The GC-MS data of the intermediates has been compared with the literature data (Xie et al., J. Am. Chem. Soc. 2019, 141, 9, 4002–4009).^[38]

Characterization of isolated products using IR, ¹H NMR, ¹³C NMR, and HRMS:

The ¹H and ¹³C{H} NMR spectra of all compounds have been recorded in 400 and ~101 MHz spectrometers using TMS as an internal standard, respectively. The HRMS analysis data of samples reported here were obtained from QTOF mass analyzer by the ESI method. The IR spectra of samples reported here were recorded as neat or thin films. Column chromatography purification of crude reaction mixtures/samples was carried out on alumina. Thin layer chromatography (TLC) analyses were carried out on alumina or silica gel plates. The components of TLC analysis were visualized by observation under iodine vapor.

5-Methyl-1-octylpyrrolidin-2-one:

The compound 5-methyl-1-octylpyrrolidin-2-one was obtained after purification by column chromatography on alumina (EtOAc : hexane = 10 : 90) as yellow color liquid (137 mg, 65%, 1 mmol scale);

 R_f (10% EtOAc/hexane) 0.5;

IR (DCM): 2920, 1746, 1185 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ_H 3.73-3.65 (1H, m), 3.62-3.54 (1H, m), 2.94-2.87 (1H, m), 2.45-2.28 (2H, m), 2.22-2.13 (1H, m), 1.61-1.49 (2H, m), 1.46-1.39 (1H, m), 1.27-1.27 (10H, m), 1.20 (3H, d, J = 6.3 Hz), 0.88 (3H, t, J = 6.3 Hz).

¹³C NMR (~101 MHz, CDCl₃): δ_C 173.8, 52.5, 39.2, 31.0, 29.5, 28.5, 28.5, 26.7, 26.2, 26.1, 21.9, 19.0, 13.3.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₂₆NO: 212.2014 found 212.2019.

The compound is known in the literature, and the characterization data of this compound was compared with the literature data (Wei et al., *Green Chem.* 2014, *16*, 1093-1096).

1-Cyclohexyl-5-methylpyrrolidin-2-one:

The compound 1-cyclohexyl-5-methylpyrrolidin-2-one was obtained after purification by column chromatography on alumina (EtOAc : hexane = 10 : 90) as yellow color liquid (72 mg, 40%, 1 mmol scale);

R_f (10% EtOAc/hexane) 0.5;

IR (DCM): 2927, 1748, 1187 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ_H 3.83-3.66 (2H, m), 2.52-2.42 (1H, m), 2.32-2.22 (1H, m), 2.19-2.09 (1H, m), 1.85-1.75 (3H, m), 1.70-1.63 (3H, m), 1.61-1.55 (1H, m), 1.53-1.46 (1H, m), 1.38-1.32 (2H, m), 1.27-1.24 (3H, m), 1.19-1.08 (1H, m).

¹³C NMR (~101 MHz, CDCl₃): δ_C 174.4, 52.8, 52.4, 31.8, 30.3, 30.0, 27.4, 25.9, 25.8, 25.5, 22.4.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₁H₂₀NO: 182.1545 found 182.1549.

The compound is known in the literature, and the characterization data of this compound was compared with the literature data (Wei et al., *Green Chem.* 2014, *16*, 1093-1096).

1-Decyl-5-methylpyrrolidin-2-one:

(Sample code: KS-P-62)

The compound 1-decyl-5-methylpyrrolidin-2-one was obtained after purification by column chromatography on alumina (EtOAc : hexane = 10 : 90) as yellow color liquid (205 mg, 86%, 1 mmol scale);

R_f (10% EtOAc/hexane) 0.5;

IR (DCM): 2929, 1748, 1185 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ_H 3.72-3.63 (1H, m), 3.60-3.52 (1H, m), 2.94-2.84 (1H, m), 2.44-2.26 (2H, m), 2.23-2.11 (1H, m), 1.60-1.37 (3H, m), 1.25-1.15 (17H, m), 0.88-0.85 (3H, m).

Proton count: 29

¹³C NMR (~101 MHz, CDCl₃): δ_C 174.3, 52.9, 39.7, 31.7, 30.0, 29.2, 29.2, 29.0, 29.0, 27.1, 26.8, 26.5, 22.4, 19.5, 13.8.

HRMS (ESI): *m/z* [M+Na]⁺ calcd for C₁₅H₂₉NNaO: 262.2147 found 262.2156.

The compound is known in the literature, and the characterization data of this compound was compared with the literature data (Barbaro et al., *Adv. Sustainable Syst.* **2020**, *4*, 1900117).

1-Benzyl-5-methylpyrrolidin-2-one:

The compound 1-benzyl-5-methylpyrrolidin-2-one was obtained after purification by column chromatography on alumina (EtOAc : hexane = 10 : 90) as yellow color liquid (131 mg, 69%, 1 mmol scale);

 R_{f} (20% EtOAc/hexane) 0.5;

IR (DCM): 3146, 2925, 1738, 1180, 851 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): δ_H 7.34-7.23 (5H, m), 3.99 (1H, d, J = 15.0 Hz), 4.00 (1H, d, J = 15.0 Hz), 3.56-3.48 (1H, m), 2.54-2.36 (2H, m), 2.20-2.11 (1H, m), 1.64-1.55 (1H, m), 1.16 (3H, d, J = 6.3 Hz).

¹³C NMR (~101 MHz, CDCl₃): δ_C 174.3, 136.3, 128.0, 127.4, 126.8, 52.3, 43.3, 29.7, 26.1, 19.1.

HRMS (ESI): *m/z* [M+H]⁺ calcd for C₁₂H₁₆NO: 190.1232 found 190.1241.

The compound is known in the literature, and the characterization data of this compound was compared with the literature data (Wei et al., *Green Chem.* 2014, *16*, 1093-1096).

1-Heptyl-5-methylpyrrolidin-2-one:

The compound 1-heptyl-5-methylpyrrolidin-2-one was obtained after purification by column chromatography on alumina (EtOAc : hexane = 10 : 90) as yellow color liquid (121 mg, 61%, 1 mmol scale);

R_f (10% EtOAc/hexane) 0.5;

IR (DCM): 2929, 1748, 1185 cm⁻¹;

¹H NMR (400 MHz, CDCl₃): *δ_H* 3.71-3.60 (1H, m), 3.58-3.48 (1H, m), 2.93-2.82 (1H, m), 2.42-2.24 (2H, m), 2.20-2.07 (1H, m), 1.57-1.34 (3H, m), 1.31-1.13 (11H, m), 0.90-0.79 (3H, m).

¹³C NMR (~101 MHz, CDCl₃): δ_C 174.4, 53.0, 39.8, 31.5, 30.1, 28.8, 27.2, 26.7, 26.5, 22.3, 19.5, 13.8.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₂H₂₄NO: 198.1858 found 198.1858.