Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Fig. S1 XRD pattern of $NiFe_2O_4$ catalyst(a) and furfural hydrogenation reaction result with $NiFe_2O_4$ catalyst(b).

Sample	Temperature at maximum/°C	Quantity/mmol/g		
	86.3	0.20887		
2NaNi	289.4	3.696*10-2		
	382.8	6.678*10-2		
	114.7	0.18650		
ZNaFe	716.2	2.16829		
	106.4	0.12948		
	318	2.697*10-2		
UNANIFe	384.6	9.408*10-3		
	464	99.370*10-2		
	136.6	0.30649		
	246.7	0.1383		
ZNaNiFe	322.8	3.880*10-2		
	490.3	0.11348		

Table S1 Desorption peak temperature and hydrogen adsorption quantity of 2NaNi, 2NaFe, 0NaNiFe and 2NaNiFe

Test Measure	Ni/%	Fe/%	Ni:Fe
Liner scan	62.68ª	15.36ª	4.08
Mapping	11.68ª	2.74ª	4.26
ICP-MS	12.50 ^b	2.89 ^b	4.33

Table S2 The ratio of Ni and Fe on liner scan, mapping scan and ICP-MS of 2NaNiFe

a: the value indicates the atomic percent of element in catalyst

b: the value indicates the element concentration of catalyst, mmol/g.

Entry ·	Na 1s	Ο	1s		Ni 2p	Fe 2p	
	Na	Ni(OH) ₂ NiFe ₂ O ₄		Ni ⁰	NiFe ₂ O ₄	Fe ⁰	Fe ₂ O ₃
Ex XPS	1071.42 ¹	531.6	529.9	852.54	855.4	706.7	711.4
In XPS	1071.95	531.7 ²	530 ³	852.784	855.5(Ni(OH) ₂) ⁵	706.56	711.6 ⁷

Table S3 The BE on Na 1s, O 1s, Ni 2p and Fe 2p of 2NaNiFe under Ex XPS and In XPS condition

		Reduction	Reaction condition							
Entry	Catalyst	before	m _{furfural}	mcatalyst	Tem.	Pre.	Time	Con.	Sel.	Ref.
		reaction	/mg	/mg	/°C	/MPa	/h	/%	/%	
1	$Ir_1/mpg-TiO_2$	250°C, 2h	96	120	140	1	6	99	99	8
2	Pt/m-CN-2	No	252	29	70	1	2	99.3	98.5	9
3	Pd/MnO ₂	No	1000	10	180	2	5	83	60	10
4	Pt_1Cu_{20}	300°C, 0.5h	20	30	50	2	7	97	99	11
5	Ni@OMC	No	290	100	180	3	12	92.3	98.6	12
6	CuNi/rss AC	NaBH ₄ , 70°C, 12h	250	25	140	1.5	4	100	84.4	13
7	Ni-Fe(2)CeO ₂ HT-573	No	106	50	150	1	0.5	96	95	14
8	NiCoZn@CN-600	400°C, 2h	245	25	160	2	3	100	85.6	15
9	CuCo/Zn@NPC- 600	400°C	245	25	140	2	4	100	100	16
10	2NaNiFe	No	700	25	130	1	1	98.21	98.39	This work

Table S4 Catalytic performance of recently developed catalysts for the hydrogenation

reaction of furfural

Turnover frequency (TOF) can unveil the consumption rate of per number of exposed Ni_3Fe_1 sites on the catalyst. TOF should be evaluated under a stable furfural consumption state at low conversion. The Ni_3Fe_1 alloy distribution and structure of 2NaNiFe catalyst had been confirmed by XRD and HRTEM.

We supposed that the (111) plane of Ni₃Fe₁ phase was bounded on the spherical nanoparticles and defined the lattice distance and the particle diameter as d and d', respectively. It can be known that only face-centered cubic Ni₃Fe₁ alloy phase excited in 2NaNiFe catalyst, so the space utilization of closet packing is 74.05%.

b. Volume of single atom= $\overline{6}$

$$\frac{\pi d'^3}{2}$$

Volume of one spherical nanoparticle= 6

N_{san} (Number of surface atoms of one spherical nanoparticle) = $\frac{\pi d^{3}}{6} \times 74.05\% / \frac{\pi d^{3}}{6} = 0.7405 \times d^{3} / d^{3}$)

D (Dispersion) = N_{sa}/ N_{san} = $(3.626\pi d'^2/d^2)/(0.7405 \times d'^3/d^3) = 4.90 \times d/d'$

The TOF value of 2NaNiFe catalyst was calculated as follow: $n_{furfural} = 700/96.08 =$

7.2856 mmol, Conversion_{15min}= 49.57%, $n_{metal} = (12.5028 + 2.8863) \times 0.025 = 0.3847$

mmol, $D_{metal} = 4.9 \times 0.205/11.2 = 0.0897$, t = 0.25 h.

 $TOF_{2NaNiFe}$ (h⁻¹) = 7.2856×49.57%/(0.3847×0.0897×0.25) = 418.63 h⁻¹

References

- 1. S. P. Kowalczyk, L. Ley, F. R. McFeely, R. A. Pollak and D. A. Shirley, *Physical Review B*, 1973, **8**, 3583-3585.
- 2. K. S. Kim and N. Winograd, *Surface Science*, 1974, **43**, 625-643.
- 3. G. C. Allen and K. R. Hallam, *Appl. Surf. Sci.*, 1996, **93**, 25-30.
- 4. C. E. Dubé, B. Workie, S. P. Kounaves, A. Robbat, M. L. Aksub and G. Davies, *J. Electrochem. Soc.*, 1995, **142**, 3357-3365.
- 5. T. Dickinson, A. F. Povey and P. M. A. Sherwood, *Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases*, 1977, **73**, 327-343.
- 6. Surf. Interface Anal., 1987.
- 7. P. Mills and J. L. Sullivan, *Journal of Physics D: Applied Physics*, 1983, 16, 723-732.
- S. B. Tian, W. B. Gong, W. X. Chen, N. Lin, Y. Q. Zhu, Q. C. Feng, Q. Xu, Q. Fu, C. Chen, J. Luo, W. S. Yan, H. J. Zhao, D. S. Wang and Y. D. Li, *ACS Catal.*, 2019, 9, 5223-5230.
- 9. J. Li, M. Zahid, W. Sun, X. Tian and Y. Zhu, Appl. Surf. Sci., 2020, 528.
- H. Lee, C. Nguyen-Huy, E. J. Jang, J. Lee, E. Yang, M. S. Lee, J. H. Kwak and K. An, *Catal. Today*, 2021, **365**, 291-300.
- 11. M. J. Taylor, S. K. Beaumont, M. J. Islam, S. Tsatsos, C. A. M. Parlett, M. A. Issacs and G. Kyriakou, *Appl. Catal. B: Environ.*, 2021, **284**, 10.
- 12. X. Wang, M. Qiu, R. L. Smith, Jr., J. Yang, F. Shen and X. Qi, *ACS Sustain*. *Chem. Eng.*, 2020, **8**, 18157-18166.
- 13. Q. Fu, S. Yang, P. Ning, R. Miao, L. He and Q. Guan, *ChemCatChem*, 2021, **13**, 4164-4181.
- 14. W. S. Putro, T. Kojima, T. Hara, N. Ichikuni and S. Shimazu, *Catal. Sci. Technol.*, 2017, 7, 3637-3646.
- 15. S. Li, Y. Fan, C. Wu, C. Zhuang, Y. Wang, X. Li, J. Zhao and Z. Zheng, ACS Appl. Mater. Interfaces, 2021, DOI: 10.1021/acsami.1c01436.
- Y. Fan, S. Li, Y. Wang, C. Zhuang, X. Liu, G. Zhu and X. Zou, *Nanoscale*, 2020, 12, 18296-18304.
- Z. L. Wu, J. Wang, S. Wang, Y. X. Zhang, G. Y. Bai, L. Ricardez-Sandoval, G. C. Wang and B. Zhao, *Green Chem.*, 2020, 22, 1432-1442.