Tin-catalyzed reductive coupling of amines with CO₂ and H₂

Alexandros Paparakis,^[a] Roland C. Turnell-Ritson,^[b] Joshua S. Sapsford,^[b] Andrew E. Ashley,^[b] and Martin Hulla*^[a]

[a]	Alexandros Paparakis, Martin Hulla
	Department of Inorganic Chemistry, Faculty of Science
	Charles University
	Prague 128 00
	Czech Republic
	E-mail: martin.hulla@natur.cuni.cz
[b]	Roland C. Turnell-Ritson, Joshua S. Sapsford, Andrew E. Ashley
	Department of Chemistry
	Imperial College London
	White City Campus
	London W12 OBZ
	United Kinadom

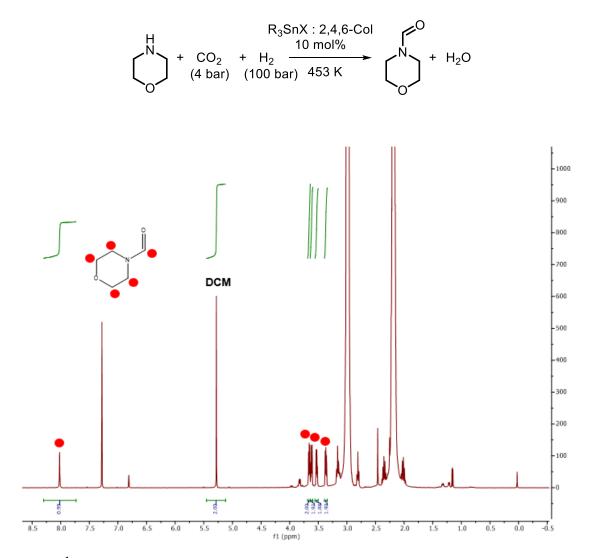
Supporting information

Contents

1. General procedures
2. Catalytic tests
2.1 General Procedure:
2.2 Typical result(s) of N-formylation of morpholine with CO_2 and H_2 :4
2.3 Optimization of reaction solvent:5
2.4 Optimization of CO_2 pressure:
2.5 Optimization of H_2 pressure:
2.6 Optimization of temperature:7
3. Synthesis of catalysts7
3.1 ⁱ Pr₃SnOTf synthesis: This procedure was adapted from reference ¹
3.2 ⁱ Pr ₂ Sn(OTf) ₂ synthesis:
3.3 Cy₃SnX synthesis:9
3.4 Synthesis of ^s Bu₄Sn16
3.5 Synthesis of ^s Bu₃SnOTf16
3.6 Synthesis of (Nph)₄Sn18
3.7 (Nph)₃SnOTf
4. Catalyst stability testing
4.1 General procedure for catalyst stability testing21
5. Gutman-Beckett acidity measurements21
5.1 General procedure for Gutman-Beckett acidity measurements
5.2 Results of Gutman-Beckett acidity measurements21

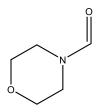
6. Substrate scope22
6.1 N-formylmorpholine
6.2 1-Formyl-4-methylpiperazine22
6.3 N-Formylpiperidine-4-carboxylic acid23
6.4 4-Acetylpiperazine-1-carbaldehyde23
6.5 Ethyl 1-formylpiperidine-2-carboxylate24
6.6 N-allyl-N-methylformamide25
6.7 N,N-diisopropylformamide25
6.8 N-Formyl-4-piperidinemethanol
6.9 Attempted N-formylation of benzylamine26
7. Synthesis of 4-hydroxymethylpiperidine
8. Heterocycle hydrogenation
9. Mechanism investigation: Formate transfer
9.1 Cy ₃ SnOCOH synthesis: The procedure was adapted from reference ⁹
9.2 Standard procedure for direct reaction of Cy ₃ SnOCOH with morpholine:
9.3 Formate transfer experiments:
10. Mechanism investigation: Cy ₃ SnOH reaction with morpholinium triflate
10.1 Standard procedure for direct reaction of Cy ₃ SnOH with morpholinium triflate:
10.2 Cy₃SnOH synthesis:
11. Mechanism investigation: In-situ ¹ H NMR of the reaction mixture
12. References:

1. General procedures


All reagents and solvents were purchased from commercial suppliers (Sigma-Aldrich, Merck, Alpha-Aesar, TCI, Across, abcr, Thermo scientific, Linde gas a.s. and Lach:ner). Specifically, tricyclohexyltin chloride was purchased from Thermo scientific, silver triflate was purchased from Sigma-Aldrich, silver triflimide was purchased from TCI and silver perchlorate was purchased from Thermo scientific. Synthetic reagents were used as received and without further purification including hydrogen gas (99.90%) and carbon dioxide for food industry (99.90%) purchased from Linde gas a.s. Solvents used were reagent grade or better. THF, hexane and DCM were dried on PureSolv MD 5 automated solvent drying system from Inert®. All other solvents were dried and stored over 3Å molecular sieves (20%w/v) and degassed by sparging with dry N₂ for a minimum of 20 minutes before use. All synthetic experiments were carried out using standard Schlenk techniques. Unless otherwise specified ¹H, ¹³C and ¹¹⁹Sn NMRs were taken on a Bruker AVANCE-III (400 MHz) at 298K spectrometer and reported in ppm (δ). Deuterated solvents were purchased from abcr and used as received except for Gutmann-Beckett measurements, where CDCl₃ was dried and stored over 3Å molecular sieves (20%w/v). NMR spectroscopy abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet. All the products of catalytic tests were identified by ¹H NMR data in comparison with literature, by GC coupled to mass spectrometry on a Shimadzu QP-2010 GC-MS with a Supelcowax 10 column and where necessary by comparison with genuine samples of the targeted compounds.

2. Catalytic tests

2.1 General Procedure:


In air R₃SnX (0.1 mmol), 2,4,6- collidine (0.1 mmol) and morpholine (1 mmol) were dissolved in sulfolane (5 mL) in a steel autoclave. The autoclave was then sealed and purged 5 times with the desired pressure of CO₂. The reaction was then topped up with the desired H₂ reaction pressure. The temperature and stirring rate were set using the Specview program on Parr 5000 series multi reactor system. T = 0 was defined as the time the heating starts. The heating was turned off 2 hours before the end of the stated reaction time and allowed to cool down under pressure over the course of the remaining 2 hours of the test i.e., for a reaction time of 24 hours the heating was turned off after 22 hours and the reaction was depressurized after the 24-hour mark. DCM (1 mmol) was added to the reactor, stirred and an aliquot was taken for ¹H NMR analysis in CDCl₃. The conversion of morpholine and the yield of N-formylmorpholine were quantified by ¹H NMR analysis with the added DCM as the internal standard. Other reaction products were quantified by their respective N-formate signal in ¹H NMR and structures confirmed by GC-MS on a Shimadzu QP-2010 GC-MS with a Supelcowax 10 column.

2.2 Typical result(s) of N-formylation of morpholine with CO₂ and H₂:

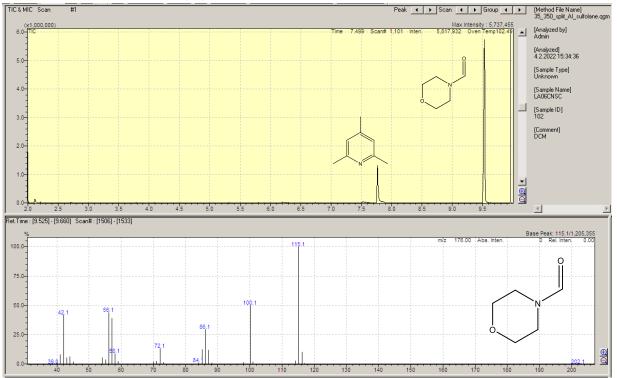


Figure S1: ¹H NMR of a reaction mixture at the end of a catalytic test of N-formylation of morpholine, where N-formylmorpholine peaks are marked by red spots. All unmarked peaks can be assigned to the reaction catalyst and sulfolane i.e R₃SnX, 2,4,6-collidine and the reaction solvent.

N-formylmorpholine:

¹H NMR (400 MHz, CDCl₃) δ : 3.36 (2H), 3.53 (m, 2H), 3.60-3.67 (m, 4H), 8.02 (1H); GC retention time 9.5 to 9.6 minutes; EI-MS (*m/z*) calculated: 115.1, found 115.1 with a 92-98% agreement of EI-MS molecular fragmentation with NIST EI-MS library.

Figure S2: GC-MS analysis of a reaction mixture at the end of a catalytic test of N-formylation of morpholine with R₃SnX : 2,4,6-collidine as the reaction catalyst.

2.3 Optimization of reaction solvent:

ⁱPr₃SnOTf : 2,4,6-collidine (FLP1) have been reported to hydrogenate imines and aldehydes^{1,2} in 1,2-dichlorobenzene (DCB) as the solvent. All other reported FLPs also used aromatic or ether solvents such as toluene, fluorobenzene, THF, dioxane or diethylether^{2–5}. Nevertheless, initial attempts to N-formylate morpholine with CO₂ and H₂ as the reductant and **FLP1** catalyst in DCB were limited by mass transfer due to poor solubility of morpholinium carbamate salt, which precipitated out of the reaction medium upon addition of CO₂. Thus, we turned to dipolar aprotic solvents namely sulfolane, N-methylpyrrolidone (NMP), ethylene carbonate, dimethylformamide

(DMF) and benzonitrile. It was found that NMP gave the highest conversion, however, it has been shown that it may decompose to a formylated product⁶ so would be unreliable in the quantification of further reactions. DMF acted as a formylating reagent as well as the reaction solvent when it was tested so it was also disregarded. Considering this, sulfolane was selected as the reaction solvent as it gave comparable yields to NMP, and it is comparably less toxic.

Table S1: Effect of reaction solvent on the N-formylation of morpholine with FLP1 (10 mol%), H_2 (30 bar) and CO₂ (4 bar).

Catalyst (LA)	Solvent	Temperature (K)	Time (hr)	Yield (%)
ⁱ Pr ₃ SnOTf	DCB	453	24	8
ⁱ Pr ₃ SnOTf	Benzonitrile	453	24	15
ⁱ Pr ₃ SnOTf	Sulfolane	453	24	22
ⁱ Pr ₃ SnOTf	NMP	453	24	25
ⁱ Pr ₃ SnOTf	Ethylene carbonate	453	24	5

2.4 Optimization of CO₂ pressure:

Table S2: Effect of CO_2 partial pressure on the N-formylation of morpholine with FLP1 (10 mol%) and 5 mL sulfolane.

Catalyst (LA)	H ₂ Pressure (bar)	CO ₂ Pressure (bar)	Temperature (K)	Time (hr)	Yield (%)
ⁱ Pr ₃ SnOTf	30	1	453	24	17
ⁱ Pr ₃ SnOTf	30	2	453	24	27
ⁱ Pr ₃ SnOTf	30	4	453	24	26
ⁱ Pr ₃ SnOTf	30	8	453	24	20
ⁱ Pr ₃ SnOTf	60	30	453	24	14

2.5 Optimization of H₂ pressure:

Table S3: Effect of H₂ partial pressure on the N-formylation of morpholine with FLP1 (10 mol%) and 5 mL sulfolane.

Catalyst (LA)	H ₂ Pressure (bar)	CO ₂ Pressure (bar)	Temperature (K)	Time (hr)	Yield (%)
ⁱ Pr ₃ SnOTf	15	4	453	24	10
ⁱ Pr ₃ SnOTf	30	4	453	24	21
ⁱ Pr ₃ SnOTf	50	4	453	24	50
ⁱ Pr ₃ SnOTf	100	4	453	24	56
ⁱ Pr ₃ SnOTf	120	4	453	24	56

2.6 Optimization of temperature:

Table S4: Effect of temperature on the N-formylation of morpholine with FLP1 (10 mol%) and 5 mL sulfolane.

Catalyst (LA)	H ₂ Pressure (bar)	CO ₂ Pressure (bar)	Temperature (K)	Time (hr)	Yield (%)
ⁱ Pr ₃ SnOTf	100	4	433	24	26
ⁱ Pr ₃ SnOTf	100	4	443	24	36
ⁱ Pr ₃ SnOTf	100	4	453	24	56
ⁱ Pr ₃ SnOTf	100	4	463	24	54
ⁱ Pr ₃ SnOTf	100	4	473	24	53

3. Synthesis of catalysts

3.1 ⁱPr₃SnOTf synthesis: This procedure was adapted from reference¹

 i Pr₄Sn (5.0 g, 17.2 mmol) and HOTf (3.3 g ,14.6 mmol) were added to CHCl₃ (80 mL) and stirred at RT for 5 days. After which the solution was filtered and evaporated under reduced pressure. The resulting solid was washed with heptane (3 x 10 mL) affording i Pr₃SnOTf as a white solid (4.8 g, 83%).

¹H NMR (400 MHz, CDCl₃) δ : 1.48 [6H, d, J_(1H-1H) = 7.6 Hz, J_(117Sn-1H) = 86 Hz, J_(119Sn-1H) = 90 Hz, CH₃], 2.18 [1H, sept, J_(1H-1H) = 7.6 Hz, J_(119Sn-1H) = 39 Hz, CH].

3.2 ⁱPr₂Sn(OTf)₂ synthesis:

ⁱPr₄Sn (2.0g, 6.9mmol) and HOTf (3.2 g ,14 mmol) were added to CHCl₃ (80 mL) and stirred at RT for 5 days. After which the solid was separated, washed with hexane (3 x 10mL) and dried. ⁱPr₂Sn(OTf)₂ was afforded as a white solid in 85% yield.

¹H NMR (400 MHz, acetone-d₆) δ : 1.53 (6H), 2.52 (1H); ¹³C and ¹¹⁹Sn were measured at 600 MHz Brucker NMR instrument. ¹³C NMR (150 MHz, acetone-d₆) δ : 120.1(q, CF₃) 20.49 (s, CH), 19.4 (s, CH₃); ¹¹⁹Sn NMR (224 MHz, acetone-d₆) δ : -381.4 (s)

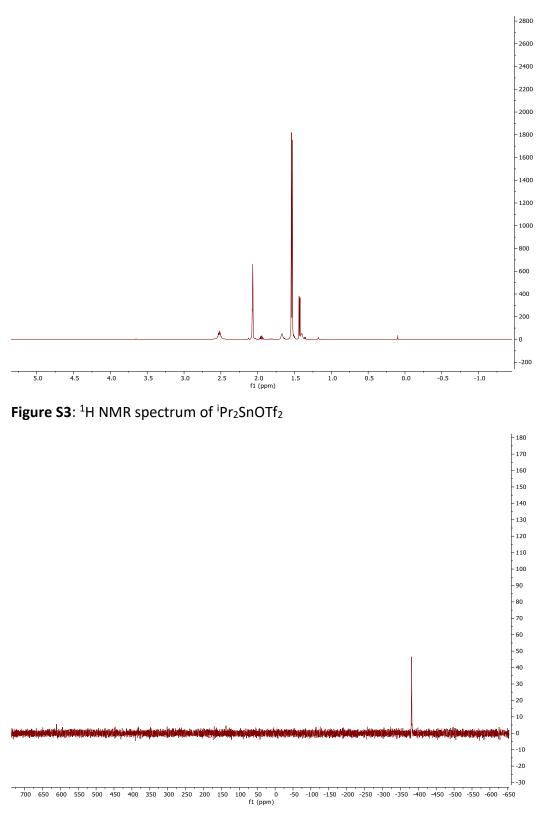


Figure S4: ¹¹⁹Sn NMR spectrum of ⁱPr₂SnOTf₂

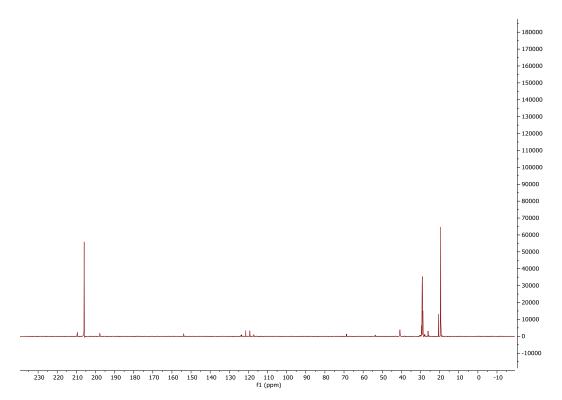


Figure S5: ¹³C NMR spectrum of ⁱPr₂SnOTf₂

3.3 Cy₃SnX synthesis:

To a solution of Cy₃SnCl (500 mg,1.24 mmol) in CH₂Cl₂ (50mL) was added AgX (1.24 mmol, X = OTf, NTf₂, ClO₄). The reaction was stirred at RT for 3 days. The solution was then filtered and evaporated under reduced pressure affording a white solid.

Cy₃SnOTf:

¹H NMR (400 MHz, CDCl₃) δ: 2.29 – 1.21ppm (m, 33H); ¹³C, ¹⁹F and ¹¹⁹Sn were measured at 600 MHz Brucker NMR instrument. ¹³C NMR (150 MHz, CDCl₃) δ: 38.72ppm (s), 30.64ppm (s), 28.76ppm (s), 26.57ppm (s); ¹¹⁹Sn NMR (224 MHz, CDCl₃) δ: 73.9ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ: -77.20ppm (s); HRMS+ for C₁₉H₃₃F₃O₃SSn m/z: 517.2972 (calculated: 517.2352); HRMS- for CF₃O₃S⁻ m/z: 148.9580 (calculated: 148.9520)

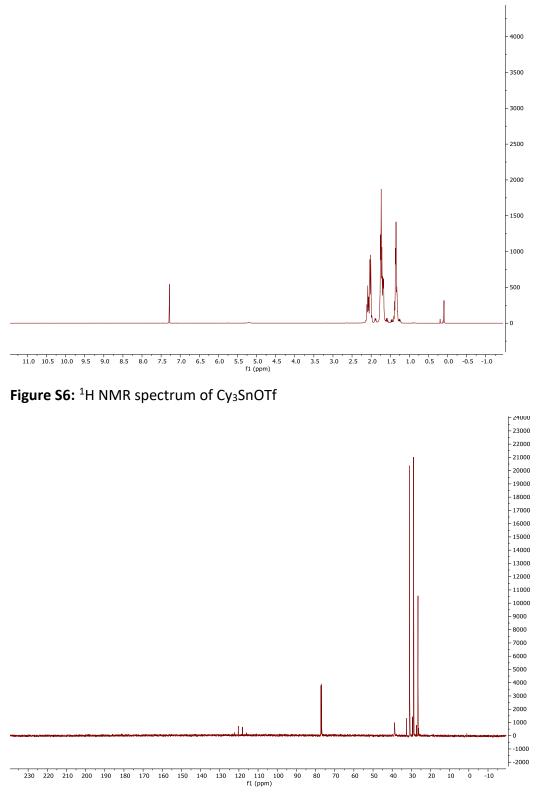


Figure S7: ¹³C NMR spectrum of Cy₃SnOTf

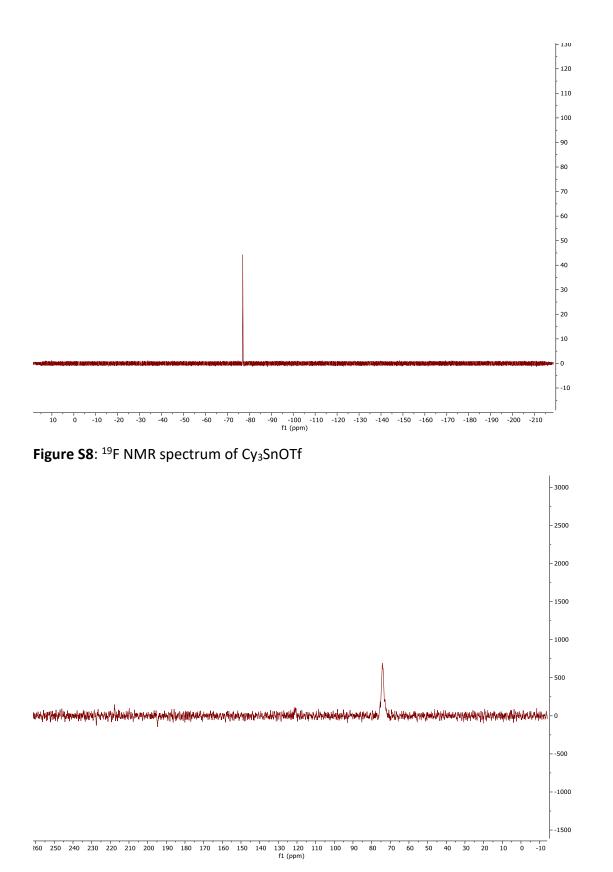


Figure S9: 119Sn NMR spectrum of Cy₃SnOTf

Cy₃SnClO₄:

¹H NMR (400 MHz, CDCl₃) δ : 2.40 – 1.23ppm (m, 33H); ¹³C, ¹⁹F and ¹¹⁹Sn were measured at 600 MHz Brucker NMR instrument. ¹³C NMR (150 MHz, CDCl₃) δ : 38.66ppm (s), 30.66ppm (s), 28.83ppm (s), 26.56ppm (s); ¹¹⁹Sn NMR (224 MHz, CDCl₃) δ : 74.3ppm (s); HRMS+ for C₁₈H₃₃Sn⁺ m/z: 369.1661 (calculated: 369.1604); HRMS- for ClO₄⁻ m/z: 98.9501 (calculated: 98.9489)

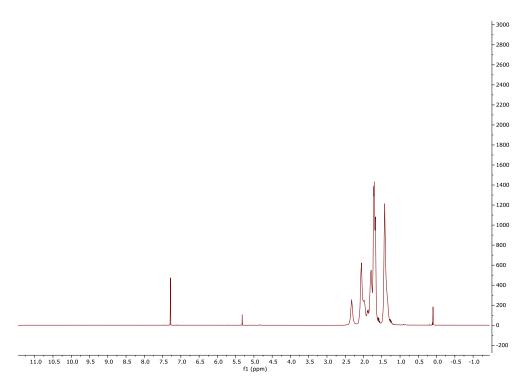


Figure S10: ¹H NMR spectrum of Cy₃SnClO₄

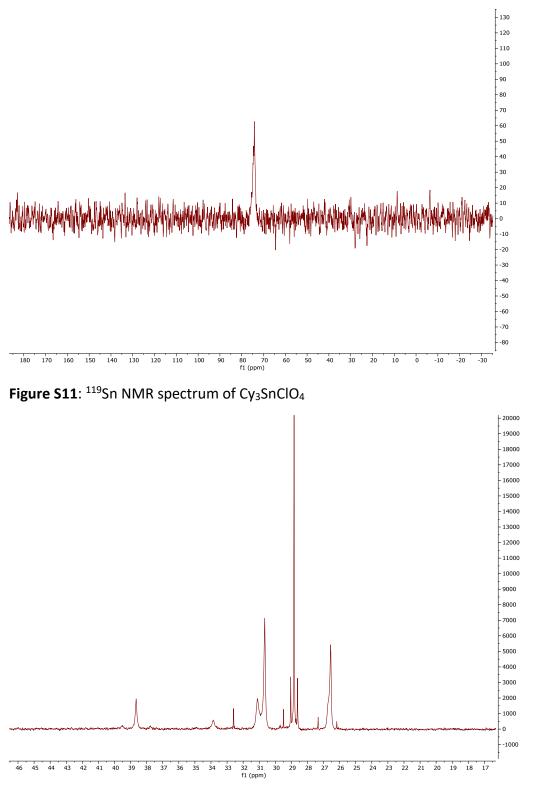


Figure S12: ¹³C spectrum of Cy₃SnClO₄

Cy₃SnNTf₂:

¹H NMR (400 MHz, CDCl₃) δ: 2.15 – 1.21ppm (m, 33H); ¹³C, ¹⁹F and ¹¹⁹Sn were measured at 600 MHz Brucker NMR instrument. ¹³C NMR (150 MHz, CDCl₃) δ: 118.95 ppm (q) (two peaks of the quartet are obscured by the baseline), 38.78ppm (s), 31.0ppm (s), 28.90ppm (s), 26.50ppm (s); ¹⁹F NMR (376 MHz, CDCl₃) δ: -78.2ppm (s); HRMS+ for C₁₈H₃₃Sn⁺ m/z: 369.1661 (calculated: 369.1614); HRMS- for C₂F₆NO₄S₂⁻ m/z: 279.9304 (calculated: 279.9173)

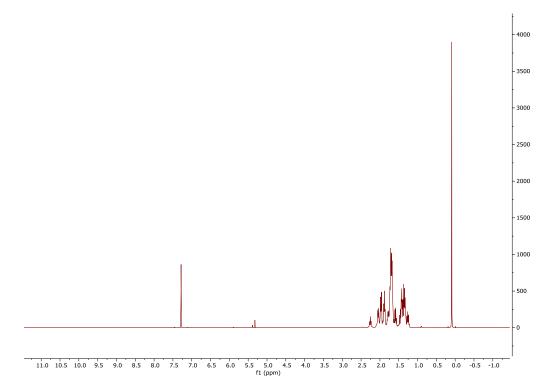


Figure S13: ¹H NMR spectrum of Cy₃SnNTf₂

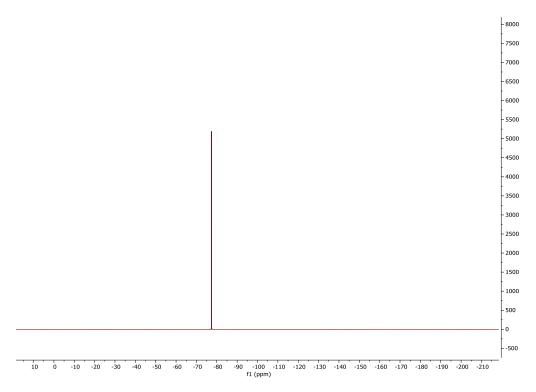


Figure S14: ¹⁹F NMR spectrum of Cy₃SnNTf₂

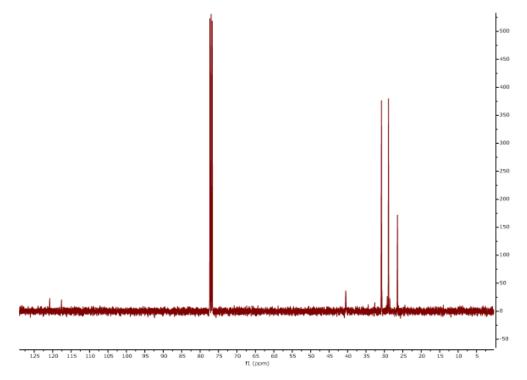


Figure S15: ¹³C NMR spectrum of Cy₃SnNTf₂

3.4 Synthesis of ^sBu₄Sn

To a suspension of Mg turnings (3.65 g, 150 mmol) and iodine (50.0 mg) in THF (40 mL) was added 2-chlorobutane (14.4 mL, 135 mmol) at 0 °C with vigorous stirring. After the addition, the solution was warmed to RT and left stirring for 10 h. The suspension was filtered through a frit and washed with THF (2 x 40 mL). The ^sBuMgCl solution was added dropwise to a stirred solution of SnCl₄ (7.50 g, 28.8 mmol) in THF (50 mL) cooled to 0 °C. After complete addition, the solution was heated to 80 °C for 3 d. After the solution was cooled to RT, H₂O (20 mL) was added carefully.

This synthesis gave a mixture of all six possible diastereomers in a statistical ratio. No attempt was made to separate them. The characterisation data presented are for this mixture.

¹H NMR (400 MHz, C₆D₆) δ 0.95 (t, ³J_{1H-1H} = 7.3 Hz, 12H, SnCHCH₂CH₃), 2.25 (d, ³J_{1H-1H} = 7.1 Hz, ³J_{1H-117/119Sn} = 60.2 Hz, 12H, SnCHCH₃), 1.29-1.44 (m), 1.46-1.64 (m), 1.67-1.87 (m); ¹¹⁹Sn{¹H} NMR (149 MHz, C₆D₆) δ -45.5, -45.1, -45.0

3.5 Synthesis of ^sBu₃SnOTf

To a solution of ${}^{s}Bu_{4}Sn$ (2.50 g, 7.20 mmol) in CHCl₃ (40 mL) was added HOTf (1.03 g, 6.84 mmol), which was stirred for 19 h at 50 °C. The solvent was removed in vacuo to yield a white gum, which would not dry further. Pentane (10 mL) was added and the solution was cooled to -40 °C and left for 12 h, whereupon a white solid precipitated. The solid was filtered, washed with cold pentane (2 x 10 mL) and dried in vacuo to furnish ${}^{s}Bu_{3}SnOTf$ as a free-flowing white powder (2.87 g, 6.53 mmol, 95%).

This synthesis gave a mixture of all four possible diastereomers in statistical ratio. No attempt was made to separate these. The characterisation data presented are for this mixture.

¹H NMR (400 MHz, C₆D₆) δ 1.04 (t, ³J_{1H-1H} = 7.3 Hz, 9H, SnCHCH₂CH₃), 1.46 (d, ³J_{1H-1H} = 7.4 Hz, ³J_{1H-117/119Sn} = 85.1 Hz, 9H, SnCHCH₃), 1.77-1.96 (m), 2.06-2.23 (m, 3H, SnCH); ¹¹⁹Sn{¹H} NMR (149 MHz, C₆D₆) δ 214.7, 215.7; MS (APCI) m/z = 369 (^sBu₃SnOSO₂⁺), 219 (^sBu₃Sn⁺)

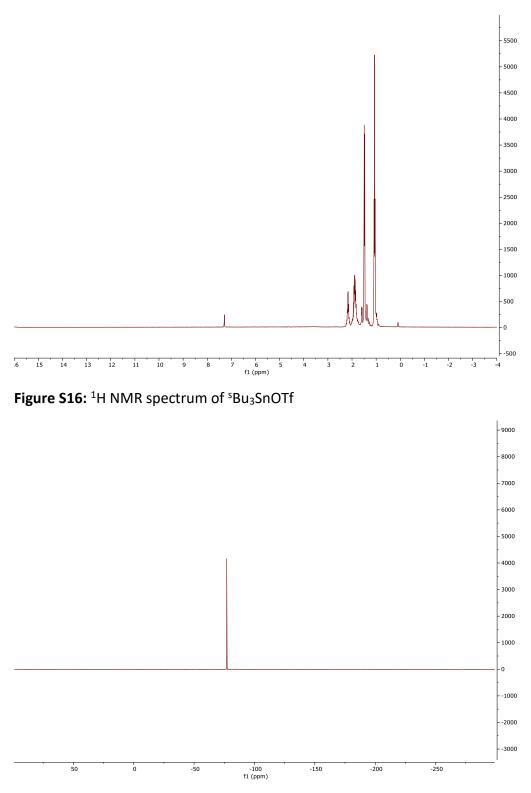


Figure S17: ¹⁹F NMR spectrum of ^sBu₃SnOTf

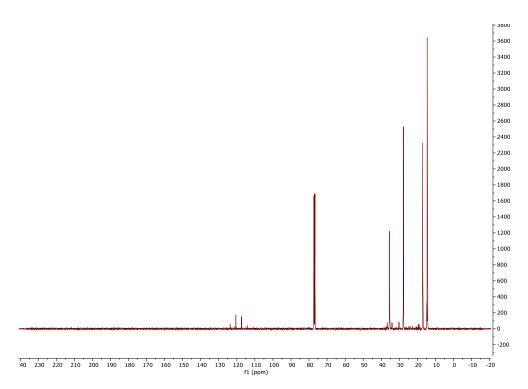


Figure S18: ¹³C NMR spectrum of ^sBu₃SnOTf

3.6 Synthesis of (Nph)₄Sn

Neophylmagnesium chloride was prepared by heating magnesium turnings (7.50 g, 309 mmol) and neophylchloride (49.0 mL, 51.3 g, 304 mmol) in Et₂O (100mL) at reflux for 24 hrs. The Grignard solution was then filtered and stirred over an ice bath. SnCl₄ (5.85 mL, 13.0 g, 50.0 mmol) in benzene (40 mL) was added dropwise, and the suspension stirred at room temperature for 60 hrs. The excess Grignard was quenched carefully with water (250 mL) before the product was extracted with Et₂O (3x150 mL), washed with water (400 mL), dried (Na₂SO₄), and the solvent removed in vacuo. Addition of an ethanol/benzene solution (3:1) resulted in the precipitation of the product, which was filtered, washed with cold ethanol (3x15 mL) and cold pentane (3x15 mL), then dried in vacuo. The product was subsequently recrystallised from pentane at -45°C, yielding (Nph)₄Sn as white crystals (26.4 g, 39.5 mmol, 79 %).

¹H NMR (400 MHz, CDCl₃): δ 7.25 [t, ³J_{1H-1H} = 7.5 Hz, 8H, *m* – CH], 7.16 [t, ³J_{1H-1H} = 7.2 Hz, 4H, *p* – CH], 7.11 [d, ³J_{1H-1H} = 7.5 Hz, 8H, *o* – CH], 1.14 [s, 24H, CH₃], 0.79 [s, ²J_{119|117Sn-1H} = 47.7 Hz, 8H, CH₂]; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 151.6 [*i* – C], 128.2 [*m* – CH], 125.7 [*o* – CH], 125.5 [*p* – CH], 38.5 [*C*(CH₃)₂], 33.5 [CH₃], 31.2 [¹J_{119Sn-13C} = 302 Hz, ¹J_{117Sn-13C} = 289 Hz, CH₂]; ¹¹⁹Sn{¹H} NMR (149 MHz, CDCl₃): δ -52.6 (s)

3.7 (Nph)₃SnOTf

Trifluoromethanesulfonic acid (0.68 mL, 1.15 g, 7.67 mmol) suspended in $CHCl_3$ (5 mL) was added dropwise to a solution of (Nph)₄Sn (5.00g, 7.67 mmol) in $CHCl_3$ (40 mL) with rapid stirring. The

mixture was heated to 60° C for 48 hours, the solution was filtered, the solvent removed in vacuo, and the solid thoroughly washed with pentane (3x30 mL). The product was subsequently recrystallised from Et₂O at -45°C, yielding (Nph)₃SnOTf as colourless needles (4.06 g, 6.08 mmol, 79 %).

¹H NMR (400 MHz, CDCl₃): δ 7.35-7.25 [m, 9H, m – CH, p – CH], 6.91 [m, 6H, o – CH], 1.35 [s, ²J_{119|117Sn-1H} = 45.6 Hz, 6H, CH₂], 1.21 [s, 18H, CH₃]; ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 150.4 [i – C], 129.0 [m – CH], 126.6 [p – CH], 125.1 [o – CH], 41.1 [¹J_{119|117Sn-13C} = 307 Hz, CH₂], 37.6 [C(CH₃)₂], 32.9 [CH₃]; ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ -77.7 (s); ¹¹⁹Sn{¹H} NMR (149 MHz, CDCl₃): δ 250 (s); HRMS (EI) found (calculated) for C₃₁H₃₉F₃O₃SSn m/z: 668.1589 (668.1594)

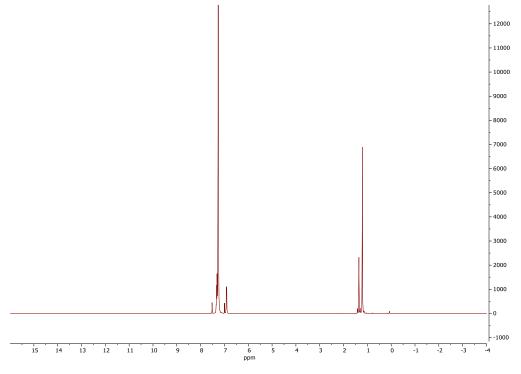


Figure S19: ¹H NMR spectrum of NPh₃SnOTf

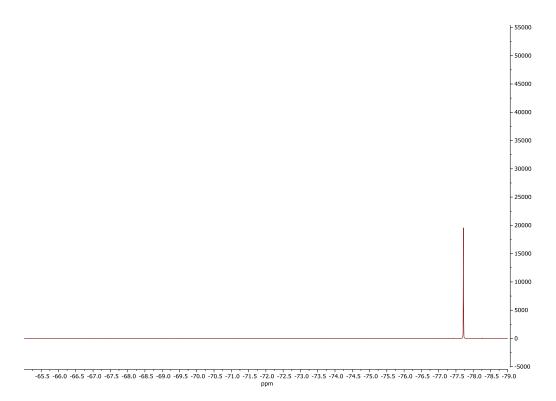


Figure S20: ¹⁹F NMR spectrum of NPh₃SnOTf

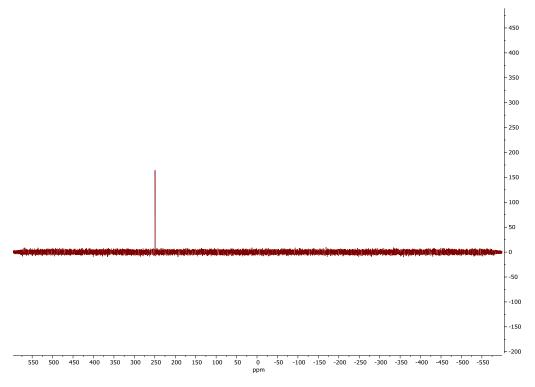


Figure S21: ¹¹⁹Sn NMR spectrum of NPh₃SnOTf

4. Catalyst stability testing

4.1 General procedure for catalyst stability testing

Morpholine (1mmol), and 1 mol% of catalyst were dissolved in sulfolane under standard reaction conditions (100 bar H₂, 4 bar CO₂ and at 453 K). The reaction was run for a week at which point the autoclave was degassed, an aliquot was taken and if no morpholine remained in the sample another 1 mmol of morpholine was added and the autoclave was repressurized. This process was repeated until the catalyst stopped fully converting starting material. The Cy₃SnOTf was stopped at 300 turnovers (3 week long reaction) as this was enough to conclude it was more stable than $^{i}Pr_{3}SnOTf$ which only reached 162 (2 week long reaction) turnovers.

5. Gutman-Beckett acidity measurements

5.1 General procedure for Gutman-Beckett acidity measurements

0.02 mL of a stock solution of Triethylphosphine oxide (30 mg, 0.22 mmol,) in 2 mL of dry $CDCl_3$ was added to a solution of Lewis acid (0.1 mmol) in 0.5mL of $CDCl_3$. ³¹P (¹H) NMRs wertr then measured, after which more Lewis acid was added, the sample was then remeasured, and this process was repeated until the peak positions remained constant.

The acceptor numbers were calculated using the formula from reference⁷

Acceptor number = [$\delta^{31}P$ [¹H]/ppm (sample) – 41.0] x 2.22

5.2 Results of Gutman-Beckett acidity measurements

Table S5: Summary of the acceptor numbers for Cy₃SnX Lewis acids.

Catalyst (LA)	δ ³¹ Ρ [¹ H]/ppm	Acceptor number	
Cy₃SnOTf	68.1	60.2	
Cy ₃ SnNTf ₂	76.9	79.7	
Cy ₃ SnClO ₄	71.6	67.9	

6. Substrate scope

6.1 N-formylmorpholine

¹H NMR (400 MHz, CDCl₃) δ : 3.36 (2H), 3.53 (m, 2H), 3.60-3.67 (m, 4H), 8.02 (1H); GC retention time 9.5 to 9.6 minutes; EI-MS (*m/z*) calculated: 115.1, found 115.1 with a 92-98% agreement of EI-MS molecular fragmentation with NIST EI-MS library.

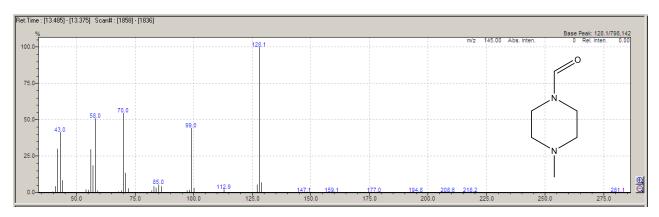
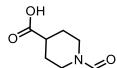


Figure S22: EI-MS analysis of the reaction product of N-formylation of morpholine with CO_2 and H_2 .

6.2 1-Formyl-4-methylpiperazine



¹H NMR (400 MHz, CDCl₃) δ : 8.03 (1H) 3.60-3.67 (m, 4H), 3.62 (m, 2H), 3.55 (2H); GC retention time 13.3 to 13.5 minutes; EI-MS (*m/z*) calculated: 128.1, found 128.1

Figure S23: EI-MS analysis of the reaction product of N-formylation of 1-methylpiperazine with CO_2 and H_2 .

6.3 N-Formylpiperidine-4-carboxylic acid

¹H NMR (400 MHz, CDCl₃) δ : 7.98 (s 1H), all other peaks were obscured by the reaction solvent; GC retention time 16.7 to 17.3 minutes; EI-MS (*m/z*) calculated: 157.1, found 157.1

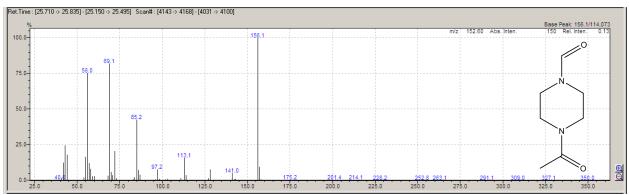
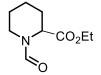


Figure S24: EI-MS analysis of the reaction product of N-formylation of piperidine-4-carboxylic acid with CO₂ and H₂.

6.4 4-Acetylpiperazine-1-carbaldehyde



¹H NMR (400 MHz, CDCl₃) δ :8.09 (s,1H), all other peaks were obscured by the reaction solvent; GC retention time 25.7 to 25.8 minutes; EI-MS (*m/z*) calculated: 156.1, found 156.1

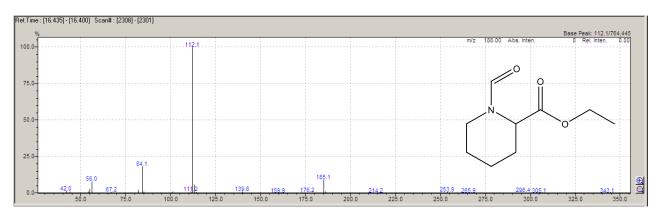
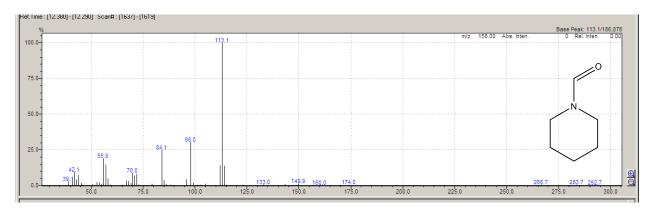


Figure S25: EI-MS analysis of the reaction product of N-formylation of 1-Acetylpiperazine with CO₂ and H₂.

6.5 Ethyl 1-formylpiperidine-2-carboxylate



¹H NMR (400 MHz, CDCl₃) mixture of rotamers δ : 8.03 (s, 1H (rotamer 1)) 7.99 (s, 1H (rotamer 2)) 7.93 (s,1H (rotamer 3)), 5.63 (s, 1H (rotamer 2)), 5.06 (d, 1H (rotamer 3)), 4.23 (s, 1H (rotamer 1), all other peaks were obscured by the reaction solvent; GC retention time 16.3 to 16.4 minutes; EI-MS (*m/z*) calculated: 185.2, found 185.1. The reaction product was also compared to a genuine sample of ethyl 1-formylpiperidine-2-carboxylate GC retention time 16.3 to 16.4 minutes; EI-MS (*m/z*) calculated: 185.2, found 185.1

Figure S26: EI-MS analysis of the reaction product of N-formylation of 1-(piperidin-2-yl)butan-1one with CO₂ and H₂.

The reaction results in a mixture of products of ethyl 1-formylpiperidine-2-carboxylate and N-formylpiperidine (70:30) with the N-formylpiperidine ¹H NMR peaks at 8.02 (s, 1H) 8.00 (s, 1H) 7.97 (s, 1H), all other peaks were obscured by the reaction solvent; GC retention time 12.38 to 12.29 minutes; EI-MS (m/z) calculated: 113.1, found 113.1

Figure S27: EI-MS analysis of the reaction side product of N-formylation of 1-(piperidin-2-yl)butan-1-onewith CO_2 and H_2 .

6.6 N-allyl-N-methylformamide

¹H NMR (400 MHz, CDCl₃) δ (mixture of rotamers): 8.08 (1H), 5.67-5.81 (m, 1H), 5.16-5.29 (m, 2H); 3.95 (d, $J_{1H-1H} = 5.81$ Hz, 1H), 3.83 (d, $J_{1H-1H} = 6.15$ Hz, 1H), 2.91 (s, 3H), 2.84 (s, 3H); GC retention time 9.4 to 9.7 minutes; EI-MS (*m/z*) calculated: 99.1, found 99.0

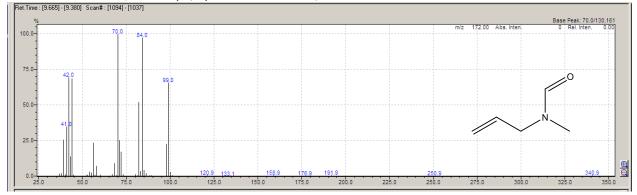
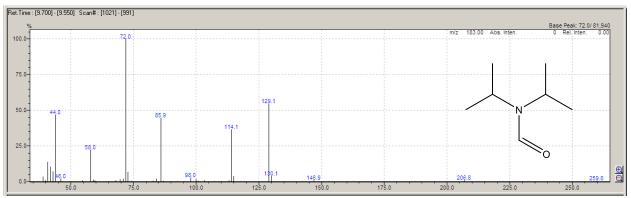
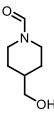



Figure S28: EI-MS analysis of the reaction product of N-formylation of N-methylprop-2-en-1-amine with CO_2 and H_2 .


6.7 N,N-diisopropylformamide

¹H NMR (400 MHz, CDCl₃) δ: 8.10 (1H), 3.62 (m, 2H), 1.21(d, 6H); GC retention time 9.5 to 9.7 minutes; EI-MS (m/z) calculated: 129.2, found 129.1

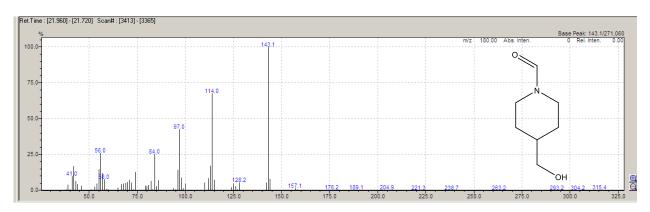
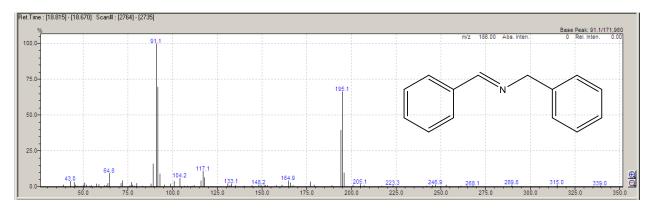


Figure S29: EI-MS analysis of the reaction product of N-formylation of diisopropylamine with CO₂ and H₂.

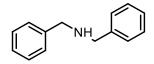
6.8 N-Formyl-4-piperidinemethanol

¹H NMR (400 MHz, CDCl₃) δ : 8.00 (s,1H), 4.41(dt, 1H), 3.63 (dp,1H), 3.50 (m, 2H), 2.62 (td, 1H), 1.14 (m, 2H) All other peaks were obscured by the reaction solvent.; GC retention time 21.7 to 21.9 minutes; EI-MS (*m/z*) calculated: 143.2, found 143.1


Figure S30: EI-MS analysis of the reaction product of N-formylation of 4-hydroxymethylpiperidine with CO_2 and H_2 .

6.9 Attempted N-formylation of benzylamine

Attempted N-formylation of benzylamine with CO₂, H₂ and Cy₃SnOTf as the reaction catalyst did not yield the expected product N-formylbenzylamine but rather the homocoupled product N-benzyl-1-phenylmethanimine and its hydrogenated analogue dibenzylamine.


N-benzyl-1-phenylmethanimine

¹H NMR (400 MHz, CDCl₃) δ : 8.05 (s, 1H); GC retention time 18.6 to 18.8 minutes; EI-MS (*m/z*) calculated: 195.3, found 195.1

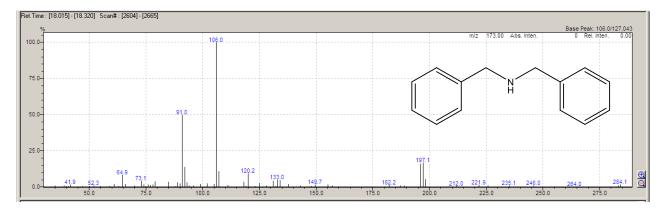


Figure S31: EI-MS analysis of the reaction product 1 of attempted N-formylation of benzylamine with CO₂ and H₂.

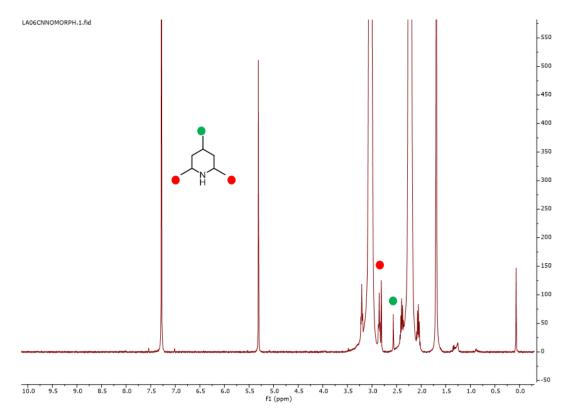
Dibenzylamine

GC retention time 18.6 to 18.8 minutes; EI-MS (*m/z*) calculated: 197.3, found 197.1

Figure S31: EI-MS analysis of the reaction product 2 of attempted N-formylation of benzylamine with CO₂ and H₂.

7. Synthesis of 4-hydroxymethylpiperidine.

The procedure was adapted from reference.⁸


In a Schlenk flask, to a stirred suspension of LiAlH₄ (6.64 g, 175 mmol) in THF (200 mL) was added isonipecotic acid (7.54 g, 58.3 mmol). The reaction was stirred at room temperature for 24h after which 10 mL of H₂O, 10 mL 15% w/w NaOH in H₂O and 10 mL of H₂O were carefully added in sequence. A colourless precipitate gradually formed. After which diethyl ether (200mL) was added, the solid was then

filtered. The solids were washed with ethyl acetate and the filtrate was collected and evacuated under reduced pressure. This afforded a colourless solid in a yield of 5.20 g (72% yield).

¹H NMR (400 MHz, CDCl₃): 3.43ppm (d, 2H), 3.07ppm (dt,2H), 2.58ppm (td, 2H), 2.48ppm (br s, 2H), 1.71ppm (d, 2H), 1.58ppm (m, 1H), 1.11 (qd, 2H)

8. Heterocycle hydrogenation

In air, to the autoclave, Cy₃SnOTf (0.1 mmol), 2,4,6-collidine (0.1 mmol) were dissolved in sulfolane (5 mL). The autoclave was then sealed and purged 5 times with the desired pressure of CO₂. The reaction is then topped up with the desired H₂ reaction pressure. The temperature and stirring rate were set using the Specview program on Parr 5000 series multi reactor system. The reaction was allowed to warm to 453K and was held there for 30 mins after which the heating was turned off and the reactor was allowed to cool to room temperature. DCM (1 mmol) was added to the reactor, stirred and an aliquot was taken for ¹H NMR in CDCl₃. The conversion was quantified by comparing the integral of the formate peak and the integral of DCM.

Figure S32: ¹H NMR spectrum of the reaction of 10mol% of Cy₃SnOTf and of 2,4,6-collidine at 100 bar H₂, 4 bar CO₂ and 453 K in the absence of morpholine.

Normally the aromatic hydrogen peak occurs at 6.9ppm however no such peak can be seen here but the alkyl groups are still present suggesting the base didn't precipitate out as a salt.

9. Mechanism investigation: Formate transfer

9.1 Cy₃SnOCOH synthesis: The procedure was adapted from reference⁹

Cy₃SnOH (0.620 g, 1.61 mmol) was added to toluene (25 mL) and heated until the solids dissolved (ca. 328K). Under rapid stirring formic acid (0.6 mL, 15.9 mmol, 98%) was added dropwise to the solution. The solution was then stirred overnight, and the volatiles were removed under reduced pressure, which afforded a white solid in a yield of 84%. This solid was used without further purification.

¹H NMR (400 MHz, CDCl₃) δ : 8.34ppm (s,1H), 2.06 – 1.85 ppm(m,), 1.76-1.63ppm(m,), 1.45-1.27ppm(m,); ¹³C and ¹¹⁹Sn were measured at 600 MHz Brucker NMR instrument. ¹³C NMR {¹H} (150 MHz, CDCl₃) δ : 166.3ppm (s, HO<u>C</u>OSn), 33.9 (s, H<u>C</u>Sn), 31.0 (s, CH₂) 28.9 (s, CH₂), 26.8 (s, CH₂); ¹¹⁹Sn NMR {¹H} (224 MHz, CDCl₃) δ : 32.3 (s)

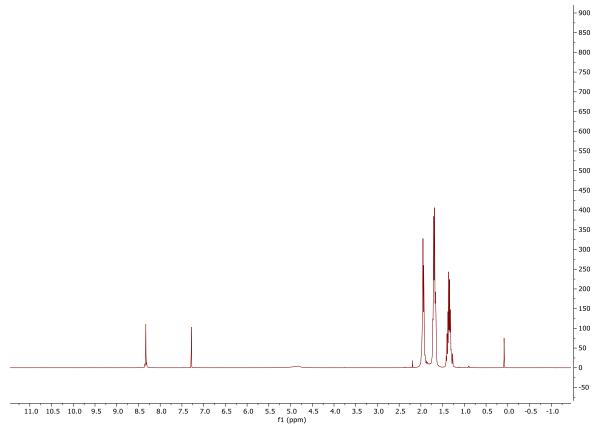


Figure S33: ¹H NMR spectrum of Cy₃SnOCOH

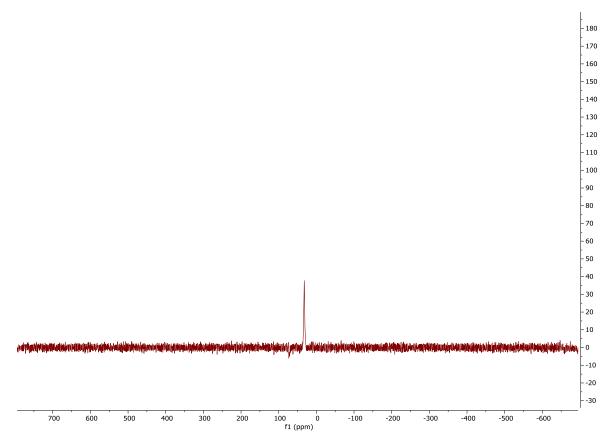


Figure S34: 119Sn NMR spectrum of Cy₃SnOCOH

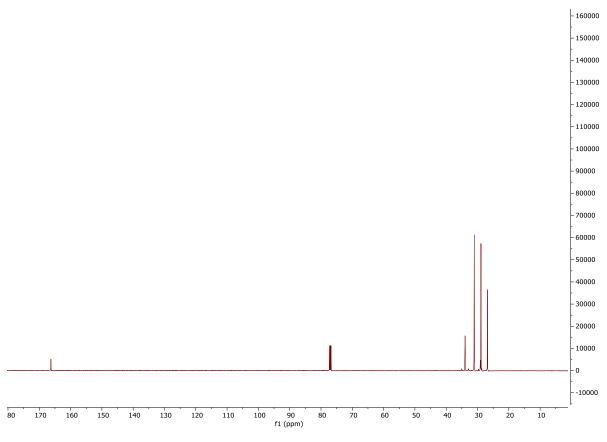


Figure S35: ¹³C NMR spectrum of Cy₃SnOCOH

9.2 Standard procedure for direct reaction of Cy₃SnOCOH with morpholine:

In air, to the autoclave, Cy₃SnOCOH (0.1 mmol), 2,4,6-collidine (0.1 mmol) and morpholine (1 mmol) were dissolved in sulfolane (5 mL). The autoclave was then sealed and purged 5 times with the desired pressure of CO₂. The reaction is then topped up with the desired H₂ reaction pressure. The temperature and stirring rate were set using the Specview program on Parr 5000 series multi reactor system. The reaction was allowed to warm to 453K and was held there for 30 mins after which the heating was turned off and the reactor was allowed to cool to room temperature. DCM (1 mmol) was added to the reactor, stirred and an aliquot was taken for ¹H NMR in CDCl₃. The conversion was quantified by comparing the integral of the formate peak and the integral of DCM.

9.3 Formate transfer experiments:

Table S6: Effect of H_2 and CO_2 on the formate transfer of $Cy_3SnOCOH$ (10 mol%) to morpholine in the presence of 2,4,6-collidine (10 mol%) in 5 mL sulfolane.

Catalyst (LA)	H ₂ Pressure (bar)	CO ₂ Pressure (bar)	Temperature (K)	Time (min)	Yield (%)
Cy ₃ SnOCOH	0	6	453	30	6
Cy ₃ SnOCOH	0	30	453	30	6
Cy ₃ SnOCOH	100	6	453	30	10
Cy ₃ SnOCOH	100	30	453	30	10
Cy ₃ SnOCOH	0	0	453	30	4

10. Mechanism investigation: Cy₃SnOH reaction with morpholinium triflate

10.1 Standard procedure for direct reaction of Cy₃SnOH with morpholinium triflate:

In air, to the autoclave, Cy₃SnOH (0.1mmol), 2,4,6-collidine (0.1mmol), morpholinium triflate (0.1mmol) and morpholine (0.9mmol) were dissolved in sulfolane (5ml). The autoclave was then sealed and purged 5 times with the desired pressure of CO₂. The reaction is then topped up with the desired H₂ reaction pressure. The temperature and stirring rate were set using **Specview program connected to the Parr 5000 series multi reactor system.** T = 0 was defined as the time the heating starts. The heating was turned off 2 hours before the end of the end of the stated reaction time i.e., for a reaction time of 24hours the heating was turned off 22 hours in and the reaction was degassed at the 24-hour mark. DCM (1mmol) was added to the reactor, stirred and an aliquot was taken for NMR in CDCl₃. The conversion was quantified by comparing the integral of the formate peak and the integral of DCM. Other reaction products were determined by GC-MS.

10.2 Cy₃SnOH synthesis:

The procedure was adapted from reference¹⁰

A 5% solution of NaOH in water (15mL) was slowly added to a solution of Cy₃SnCl (807mg, 2mmol) in Et₂O (15mL). The mixture was stirred for 1h and subsequently filtered. The ether layer was separated from the aqueous layer and the aqueous was washed with Et₂O (3x10mL). The combined ether layers were evaporated under reduced pressure and the solids were combined with the original solids. The combined solids were recrystallized from EtOH. After which EtOH was filtered, and the solids were dried. The white solid was collected in an 87% yield.

¹H NMR (400 MHz, CDCl₃) δ: 1.98 – 1.86 ppm(m,), 1.79-1.60ppm(m,), 1.45-1.24ppm(m,), -0.33ppm (s,1H); ¹³C, ¹⁹F and ¹¹⁹Sn were measured at 600 MHz Brucker NMR instrument. ¹³C NMR (150 MHz, CDCl₃) δ: 32.0 (s), 31.10 (s), 28.80 (s), 27.0 (s); ¹¹⁹Sn (224 MHz, CDCl₃) δ: 10.48 ppm

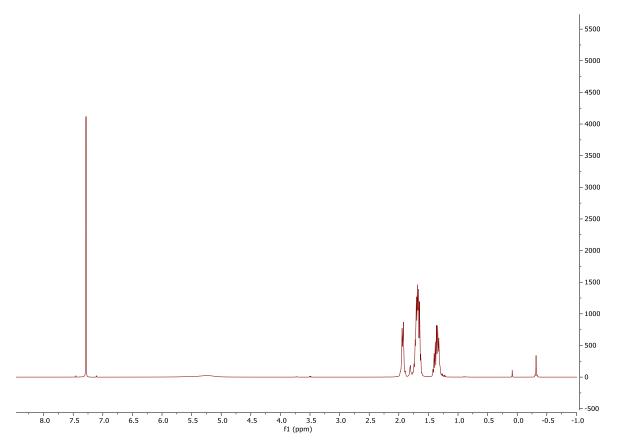


Figure S36: ¹H NMR spectrum of Cy₃SnOH

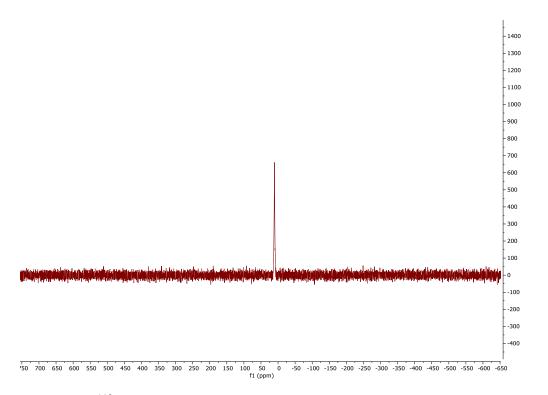


Figure S37: ¹¹⁹Sn NMR spectrum of Cy₃SnOH

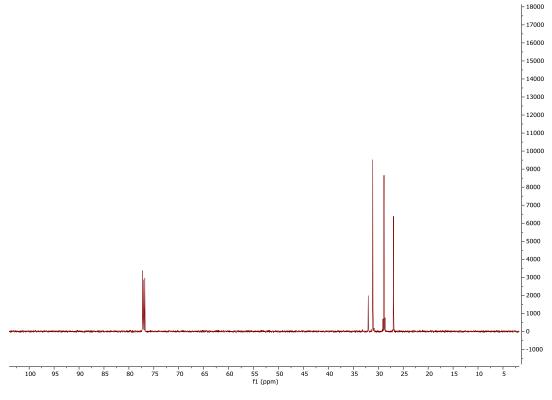
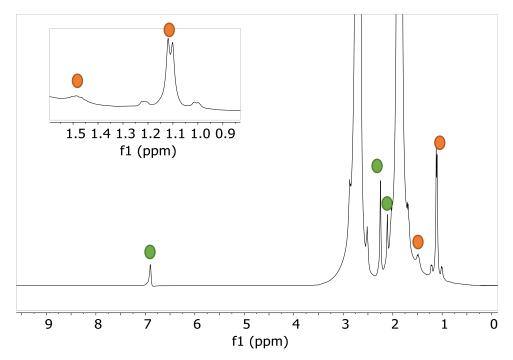
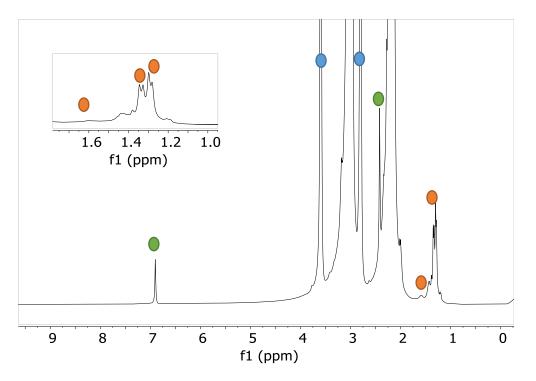



Figure S38: ¹³C NMR spectrum of Cy₃SnOH


11. Mechanism investigation: In-situ ¹H NMR of the reaction mixture

¹H NMR spectra of the reaction mixture were measured on a Bruker AVANCE-III (400 MHz) spectrometer in 10 mm sapphire tubes from Wilmad with custom-made stainless-steel caps. The measurements were performed in the absence of a deuterated solvent and hence without a signal lock. Position of ¹H NMR signals of sulfolane was then aligned with sulfolane peaks recorded in CDCl₃.

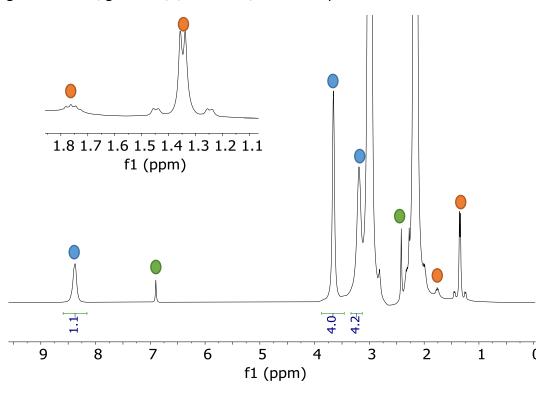


Figure S39: Reference ¹H NMR spectrum of FLP1 in sulfolane at 303 K; orange = ⁱPr₃SnOTf, green = 2,4,6-collidine

Interaction of ⁱPr₃SnOTf and 2,4,6-collidine was not observed (Figure S 13), which confirms that a FLP forms between the LA and the LB rather than a classical LA-LB adduct. However, addition of morpholine to the NMR tube resulted in splitting of ⁱPr₃SnOTf signals into two set of peaks, which indicates that morpholine binds, at least in part, to the LA (Figure S S 14). This observation is in line with the lower steric profile of morpholine in comparison to 2,4,6-collidine and might also partially explain the requirement for the high reaction temperature, which is not required in the hydrogenation of bulky imines with FLP1¹. Nevertheless, presence of CO₂ diminishes the interaction as observed by the reformation of the original ⁱPr₃SnOTf signals upon addition of CO₂ and the formation of new signals that can be attributed to morpholine-4-carboxylic acid (carbamic acid) (Figure S S 15).

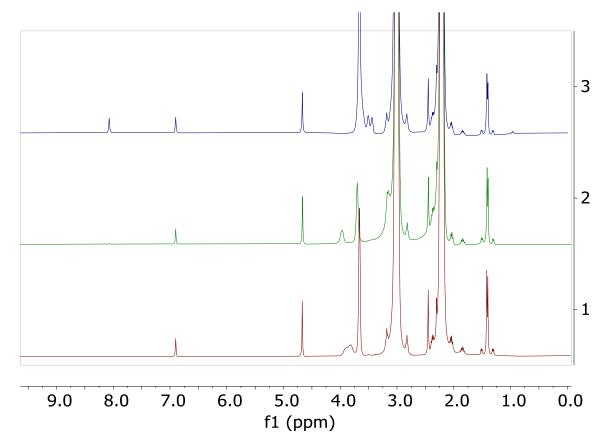


Figure S40: ¹H NMR spectrum of FLP1 (0.02 mmol) and morpholine (0.2 mmol) in sulfolane at 303 K; orange = ⁱPr₃SnOTf, green = 2,4,6-collidine, blue = morpholine

Figure S41: ¹H NMR spectrum of FLP1 (0.02 mmol) and morpholine (0.2 mmol) in sulfolane at 303 K in the presence of CO₂ (4 bar) and H2 (96 bar); orange = ${}^{i}Pr_{3}SnOTf$, green = 2,4,6-collidine, blue = morpholine carbamic acid

Heating of the reaction mixture in-situ to 393 K results in gradual collapse of the carbamic acid peaks at 3.2, 3.6 and 8.4 ppm and the formation of new peaks at 3.6 and 4.6 ppm, which cannot be attributed to morpholine nor its carbamic acid. Interaction with the reaction catalyst, however, does not take place as $^{i}Pr_{3}SnOTf$ remains the same even after heating of the reaction mixture at 393 K in-situ for 21 h and further heating at 453 K ex-situ prior to further measurements. No intermediates were observed during the reaction only the slow and gradual formation of the desired reaction product N-formylmorpholine, which indicates that hydrogen activation is the rate-determining step.

Figure S42: ¹H NMR spectrum of FLP1 (0.02 mmol) and morpholine (0.2 mmol) in sulfolane at 393 K in the presence of CO₂ (4 bar) and H₂ (96 bar); red spectrum = t(0 h), green spectrum = t(6 h) @ 393 K and blue spectrum = t(21 h) @ 393 K + t(5 h) @ 453 K

12. References:

- Scott, D. J.; Phillips, N. A.; Sapsford, J. S.; Deacy, A. C.; Fuchter, M. J.; Ashley, A. E. Versatile Catalytic Hydrogenation Using A Simple Tin(IV) Lewis Acid. *Angew. Chem. - Int. Ed.* 2016, *55* (47). https://doi.org/10.1002/anie.201606639.
- (2) Sapsford, J.; Scott, D.; Allcock, N.; Fuchter, M.; Ashley, A.; Tighe, C. Direct Reductive Amination of Carbonyl Compounds Catalyzed by a Moisture Tolerant Tin(IV) Lewis Acid. *Adv. Synth. Catal.* **2018**,

360 (6). https://doi.org/10.1002/adsc.201701418.

- (3) Gyömöre, Á.; Bakos, M.; Földes, T.; Pápai, I.; Domján, A.; Soós, T. Moisture-Tolerant Frustrated Lewis Pair Catalyst for Hydrogenation of Aldehydes and Ketones. *ACS Catal.* **2015**, *5* (9). https://doi.org/10.1021/acscatal.5b01299.
- Hamza, A.; Sorochkina, K.; Kótai, B.; Chernichenko, K.; Berta, D.; Bolte, M.; Nieger, M.; Repo, T.;
 Pápai, I. Origin of Stereoselectivity in FLP-Catalyzed Asymmetric Hydrogenation of Imines. ACS Catal. 2020, 10 (23). https://doi.org/10.1021/acscatal.0c04263.
- (5) Sapsford, J. S.; Csókás, D.; Turnell-Ritson, R. C.; Parkin, L. A.; Crawford, A. D.; Pápai, I.; Ashley, A. E. Transition Metal-Free Direct Hydrogenation of Esters via a Frustrated Lewis Pair. ACS Catal. 2021, 11 (15). https://doi.org/10.1021/acscatal.1c01940.
- Lennon, G.; Willox, S.; Ramdas, R.; Funston, S. J.; Klun, M.; Pieh, R.; Fairlie, S.; Dobbin, S.; Cobice, D. F. Assessing the Oxidative Degradation of N-Methylpyrrolidone (Nmp) in Microelectronic Fabrication Processes by Using a Multiplatform Analytical Approach. *J. Anal. Methods Chem.* 2020, 2020. https://doi.org/10.1155/2020/8265054.
- Erdmann, P.; Greb, L. What Distinguishes the Strength and the Effect of a Lewis Acid: Analysis of the Gutmann–Beckett Method. *Angew. Chem. Int. Ed.* 2022, 61 (4). https://doi.org/10.1002/anie.202114550.
- (8) Arlegui, A.; Torres, P.; Cuesta, V.; Crusats, J.; Moyano, A. A PH-Switchable Aqueous Organocatalysis with Amphiphilic Secondary Amine–Porphyrin Hybrids. *European J. Org. Chem.* 2020, 2020 (28), 4399–4407. https://doi.org/10.1002/EJOC.202000648.
- (9) Ellis, B. D.; Atkins, T. M.; Peng, Y.; Sutton, A. D.; Gordon, J. C.; Power, P. P. Synthesis and Thermolytic Behavior of Tin(IV) Formates: In Search of Recyclable Metal-Hydride Systems. 2010. https://doi.org/10.1039/c0dt00812e.
- (10) Howie, R. A.; Moura, M. V. H.; Wardell, J. L.; Wardell, S. M. S. V. Further Study of Tris(Cyclohexyl)Stannane Compounds, Cy3SnX. Syntheses of the Compounds with X = Br, I, N3 and NCS and Redetermination of the Crystal Structures of Cy3SnX (X = Br and I). *Polyhedron* 2004, 23 (14), 2331–2336. https://doi.org/10.1016/J.POLY.2004.08.001.