Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

1 Supporting Information

2

3 A chemo-enzymatic strategy for efficient synthesis of 4 amphenicol antibiotic chloramphenicol mediated by an 5 engineered L-threonine transaldolase with high activity and 6 stereoselectivity

- 7
- Lian Xu, Dan Nie, Bing-Mei Su, Xin-Qi Xu, Juan Lin *
- 9

8

10 College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116,11 China.

12

^{*}To whom correspondence should be addressed: ljuan@fzu.edu.cn (Juan Lin).

14

15 Running title: Chemo-enzymatic strategy for synthesis of chloramphenicol

Primer	Sequence (5'-3')
N35A F ^a	GACCGCAgcaGAAAATTATCCGAGCGC
N35A R	AATTTTCtgcTGCGGTCAGGCTCAGGC
N35S F	GACCGCAagcGAAAATTATCCGAGCGC
N35S R	AATTTTCgctTGCGGTCAGGCTCAGGC
N35C F	GACCGCAtgtGAAAATTATCCGAGCGC
N35C R	AATTTTCacaTGCGGTCAGGCTCAGGC
N35V F	GACCGCAgttGAAAATTATCCGAGCGC
N35V R	AATTTTCaacTGCGGTCAGGCTCAGGC
N35I F	GACCGCAattGAAAATTATCCGAGCGC
N35I R	AATTTTCaatTGCGGTCAGGCTCAGGC
N35G F	GACCGCAggcGAAAATTATCCGAGCGC
N35G R	AATTTTCgccTGCGGTCAGGCTCAGGC
Y55N F	GCATTTaatCATTGTAGCTTTCCGTTT
Y55N R	ACAATGattAAATGCGCCTGCGGTGCT
Y55L F	GCATTTctgCATTGTAGCTTTCCGTTT
Y55L R	ACAATGcagAAATGCGCCTGCGGTGCT
Y55T F	GCATTTaccCATTGTAGCTTTCCGTTT
Y55T R	ACAATGeetAAATGCGCCTGCGGTGCT
Y558 F	GCATTTagcCATTGTAGCTTTCCGTTT
Y558 R	ACAATGeetAAATGCGCCTGCGGTGCT
Y55A F	GCATTTgcaCATTGTAGCTTTCCGTTT
Y55A R	ACAATGtgcAAATGCGCCTGCGGTGCT
C57LF	TTATCATattAGCTTTCCGTTTGAAGTTCC
C57LR	GAAAGCTaatATGATAAAAATGCGCCTGC
C57M F	TTATCATetaAGCTTTCCGTTTGAAGTTCC
C57M R	GAAAGCTestATGATAAAATGCGCCTGC
C57V F	TTATCATattAGCTTTCCGTTTGAAGTTCC
C57V R	GAAAGCT ²² CATGATAAAATGCGCCTGC
C57 V R	TTATCAT
C57A P	GAAAGCTtgcATGATAAAATGCCCTGC
C5/A K E50A E	
F 59A F F 50 A D	
F 59A K E 50I E	TGTAGCattCCGTTTGAACTTCCCGCA
F 391 K	
F 5 9 V F	
F39V K	
F595 F	
F 5 9 5 K	
F59L F	
F39L K	AAACGGCagGCTACAATGATAAAATGC
C5/I-F59A F	TATCATattAGCgcaCCGTTTGAAGTTCCGGCA
C571-F59A R	AAACGGtgcGCTaatATGATAAAATGCGCCTGC
F61A F	TTTCCGgcaGAAGTTCCGGCAGGCGAA
F61A R	AACTTCtgcCGGAAAGCTACAATGATA
F611 F	TTTCCGattGAAGTTCCGGCAGGCGAA
F611 R	AACTTCaatCGGAAAGCTACAATGATA
FOLV F	TTTCCGgttGAAGTTCCGGCAGGCGAA
F61V R	AACTTCaacCGGAAAGCTACAATGATA
F61S F	TTTCCGageGAAGTTCCGGCAGGCGAA
F61S R	AACTTCgctCGGAAAGCTACAATGATA
F61L F	TTTCCGctgGAAGTTCCGGCAGGCGAA
F61L R	AACTTCcagCGGAAAGCTACAATGATA
P64A F	GAAGTTagcGCAGGCGAATGGCATTTT
P64A R	GCCTGCgctAACTTCAAACGGAAAGCT

Table S1. Primers used for site-directed mutagenesis of PsLTTA.

P64A F	GAAGTTagcGCAGGCGAATGGCATTTT
P64A R	GCCTGCgctAACTTCAAACGGAAAGCT
P64G F	GAAGTTggtGCAGGCGAATGGCATTTT
P64G R	GCCTGCaccAACTTCAAACGGAAAGCT
P64V F	GAAGTTgttGCAGGCGAATGGCATTTT
P64V R	GCCTGCaacAACTTCAAACGGAAAGCT
W68A F	GGCGAAgcaCATTTTCCGGAACCGGGT
W68A R	AAAATGtgcTTCGCCTGCCGGAACTTCAAA
W68F F	GGCGAAtttCATTTTCCGGAACCGGGT
W68F R	AAAATGaaaTTCGCCTGCCGGAACTTCAAA
W68L F	GGCGAActgCATTTTCCGGAACCGGGT
W68L R	AAAATGcagTTCGCCTGCCGGAACTTCAAA
W680 F	GGCGAAcagCATTTTCCGGAACCGGGT
W680 R	AAATGctgTTCGCCTGCCGGAACTTCAAA
W68S F	GGCGAAagcCATTTTCCGGAACCGGGT
W68S R	AAATGgctTTCGCCTGCCGGAACTTCAAA
H69F F	GAATGGtttTTTCCGGAACCGGGTCAT
H69F R	CGGAAAaaaCCATTCGCCTGCCGGAAC
H69V F	GAATGGtatTTTCCGGAACCGGGTCAT
H69V R	CGGAAAataCCATTCGCCTGCCGGAAC
H69V F	GA ATGGettTTTCCGGA ACCGGGTCAT
H60V P	CGGAAA
H691 F	GA ATGGetaTTTCCGGA ACCGGGTCAT
H69L R	CGGAAAcagCCATTCGCCTGCCGGAAC
H60A F	GAATGGaceTTTCCGGAACCGGGTCAT
H60A P	
H60I F	GAATGGattTTTCCGGAACCGCGTCAT
11091 K U126A E	TTTCCA
H126A P	
111201 F 11126T D	
H1201 K H1265 E	
П1205 Г Ц1265 Р	
H1205 K	
HI20L R	
H132A F	
HI32A K	
H132V F	GGICAIgnolle IGGAAAGULIGGAA GACCCCCATCACCACCATCACCATC
H132V K	
HI32L F	GGICAICtgGCCCIGGAAAGCCIGGCA
HI32L K	
HI32N F	GGTCA TaatGCCC TGGAAAGCC TGGCA
HI32N R	CAGGGCattAIGACCACCAICACGAIG
SI80V F	GACCAGgttTTTAAACIGCGTIGGCAG
SI80V R	TTTAAAaacCIGGICCAGAATAACAATACGAAT
S1801 F	GACCAGattTTTAAACIGCGTTGGCAG
S180I R	TTTAAAaatCTGGTCCAGAATAACAATACGAAT
SI80A F	GACCAGgcaTTTAAACTGCGTTGGCAG
SI80A R	TTTAAAtgcCTGGTCCAGAATAACAATACGAAT
S180G F	GACCAGggcTTTAAACTGCGTTGGCAG
S180G R	TITAAAgccCTGGTCCAGAATAACAATACGAAT
S180V F	GACCAGgttTTTAAACTGCGTTGGCAG
SI80V R	TITAAAaacCTGGTCCAGAATAACAATACGAAT
C262A F	TGGGTTgcaCCGCATCTGCAGAGCAAT
C262A R	ATGCGGtgcAACCCACAGGCTGGTATC
C262I F	TGGGTTattCCGCATCTGCAGAGCAAT

C262V FTGGGTTgttCCGCATCTGCAGAGCAATC262V RATGCGGaacAACCCACAGGCTGGTATCC262L FTGGGTTctgCCGCATCTGCAGAGCAATC262L RATGCGGcagAACCCACAGGCTGGTATCP263A FGTTTGTgcaCATCTGCAGAGCAATTGTP263G FGTTTGTggcCATCTGCAGAGCAATTGTP263G RCAGATGgcCACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267G FTGCAGgcAATGCGGACAAACCCACAGGS267G RCAATTgccGATGCGGACAAACCCACAGGS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGgttAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGgttAATTGTCATGCCGAACAGCTGCS267I RCAATTgccGATGCGGACAAACCCACAGGS267I RCAATTgccGATGCGGACAAACCCACAGGS267I RCAATTgccGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCCGAACAACCCACAGGS267I RCAATTaatGATGCCGAACAACCCACAGGS267I RCAATTaatGATGCCGAACAACCCACAGGS267I RCAATTaatGATGCCGAACAACCCACAGGS267I RCAATTaatGATGCCGAACAACCCACAGGS267I RCAATTaatGATGCCGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGG <th>C262I R</th> <th>ATGCGGaatAACCCACAGGCTGGTATC</th>	C262I R	ATGCGGaatAACCCACAGGCTGGTATC
C262V RATGCGGaacAACCCACAGGCTGGTATCC262L FTGGGTTctgCCGCATCTGCAGAGCAATC262L RATGCGGcagAACCCACAGGCTGGTATCP263A FGTTTGTgcaCATCTGCAGAGCAATTGTP263A RCAGATGtgcACAAACCCACAGGCTGGTP263G FGTTTGTggcCATCTGCAGAGCAATTGTP263G RCAGATGgccACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGgttAATTGTCATGCCGAACAGCTGCS267I FTGCAGgttAATTGTCATGCCGAACAGCTGCS267I RCAATTgccGATGCGGACAAACCCACAGGS267I RCAATTgccGATGCGGACAAACCCACAGGS267I RCAATTgccGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCCGAACAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGG	C262V F	TGGGTTgttCCGCATCTGCAGAGCAAT
C262L FTGGGTTctgCCGCATCTGCAGAGCAATC262L RATGCGGcagAACCCACAGGCTGGTATCP263A FGTTTGTgcaCATCTGCAGAGCAATTGTP263A RCAGATGtgcACAAACCCACAGGCTGGTP263G FGTTTGTggcCATCTGCAGAGCAATTGTP263G RCAGATGgccACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS2670 RCAATTaacGATGCGGACAAACCCACAGGS2676 RCAATTgccGATGCGGACAAACCCACAGGS2671 FTGCAGgttAATTGTCATGCCGAACAGCTGCS2671 RCAATTgccGATGCGGACAAACCCACAGGS2671 RCAATTaatGATGCGGACAAACCCACAGGS2671 RCAATTaatGATGCGGACAAACCCACAGG	C262V R	ATGCGGaacAACCCACAGGCTGGTATC
C262L RATGCGGcagAACCCACAGGCTGGTATCP263A FGTTTGTgcaCATCTGCAGAGCAATTGTP263A RCAGATGtgcACAAACCCACAGGCTGGTP263G FGTTTGTggcCATCTGCAGAGCAATTGTP263G RCAGATGgccACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS2671 FTGCAGgttAATTGTCATGCCGAACAGCTGCS2671 RCAATTgccGATGCGGACAAACCCACAGGS2671 RCAATTaatGATGCCGAACAACCCACAGG	C262L F	TGGGTTctgCCGCATCTGCAGAGCAAT
P263A FGTTTGTgcaCATCTGCAGAGCAATTGTP263A RCAGATGtgcACAAACCCACAGGCTGGTP263G FGTTTGTggcCATCTGCAGAGCAATTGTP263G RCAGATGgccACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS2670 RCAATTaacGATGCGGACAAACCCACAGGS2670 FTGCAGggcAATTGTCATGCCGAACAGCTGCS2670 FTGCAGggcAATTGTCATGCCGAACAGCTGCS2671 FTGCAGattAATTGTCATGCCGAACAGCTGCS2671 RCAATTaatGATGCGGACAAACCCACAGGS2671 RCAATTaatGATGCGGACAAACCCACAGG	C262L R	ATGCGGcagAACCCACAGGCTGGTATC
P263A RCAGATGtgcACAAACCCACAGGCTGGTP263G FGTTTGTggcCATCTGCAGAGCAATTGTP263G RCAGATGgccACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS2671 FTGCAGattAATTGTCATGCCGAACAGCTGCS2671 RCAATTaatGATGCGGACAAACCCACAGGS2671 RCAATTaatGATGCGGACAAACCCACAGG	P263A F	GTTTGTgcaCATCTGCAGAGCAATTGT
P263G FGTTTGTggcCATCTGCAGAGCAATTGTP263G RCAGATGgccACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGgttAATTGTCATGCCGAACAGCTGCS267I RCAATTgccGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGGS267I RCAATTaatGATGCGGACAAACCCACAGG	P263A R	CAGATGtgcACAAACCCACAGGCTGGT
P263G RCAGATGgccACAAACCCACAGGCTGGTP263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS2671 FTGCAGattAATTGTCATGCCGAACAGCTGCS2671 RCAATTaatGATGCGGACAAACCCACAGG	P263G F	GTTTGTggcCATCTGCAGAGCAATTGT
P263V FGTTTGTgttCATCTGCAGAGCAATTGTP263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGattAATTGTCATGCCGAACAGCTGCS267I RCAATTaatGATGCAACAGCTGCS267I RCAATTaatGATGCGGACAAACCCACAGG	P263G R	CAGATGgccACAAACCCACAGGCTGGT
P263V RCAGATGaacACAAACCCACAGGCTGGTS267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS2671 FTGCAGattAATTGTCATGCCGAACAGCTGCS2671 RCAATTaatGATGCGGACAAACCCACAGG	P263V F	GTTTGTgttCATCTGCAGAGCAATTGT
S267A FTGCAGgcaAATTGTCATGCCGAACAGCTGCS267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS2671 FTGCAGattAATTGTCATGCCGAACAGCTGCS2671 RCAATTaatGATGCGGACAAACCCACAGG	P263V R	CAGATGaacACAAACCCACAGGCTGGT
S267A RCAATTtgcGATGCGGACAAACCCACAGGS267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS2671 FTGCAGattAATTGTCATGCCGAACAGCTGCS2671 RCAATTaatGATGCGGACAAACCCACAGG	S267A F	TGCAGgcaAATTGTCATGCCGAACAGCTGC
S267V FTGCAGgttAATTGTCATGCCGAACAGCTGCS267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGattAATTGTCATGCCGAACAGCTGCS267I RCAATTaatGATGCGGACAAACCCACAGG	S267A R	CAATTtgcGATGCGGACAAACCCACAGG
S267V RCAATTaacGATGCGGACAAACCCACAGGS267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGattAATTGTCATGCCGAACAGCTGCS267I RCAATTaatGATGCGGACAAACCCACAGG	S267V F	TGCAGgttAATTGTCATGCCGAACAGCTGC
S267G FTGCAGggcAATTGTCATGCCGAACAGCTGCS267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGattAATTGTCATGCCGAACAGCTGCS267I RCAATTaatGATGCGGACAAACCCACAGG	S267V R	CAATTaacGATGCGGACAAACCCACAGG
S267G RCAATTgccGATGCGGACAAACCCACAGGS267I FTGCAGattAATTGTCATGCCGAACAGCTGCS267I RCAATTaatGATGCGGACAAACCCACAGG	S267G F	TGCAGggcAATTGTCATGCCGAACAGCTGC
S2671 FTGCAGattAATTGTCATGCCGAACAGCTGCS2671 RCAATTaatGATGCGGACAAACCCACAGG	S267G R	CAATTgccGATGCGGACAAACCCACAGG
S267I R CAATTaatGATGCGGACAAACCCACAGG	S267I F	TGCAGattAATTGTCATGCCGAACAGCTGC
	S267I R	CAATTaatGATGCGGACAAACCCACAGG

_

17 ^a: the replacement nucleotide sequences were shown in lower case text.

Figure S1. Four L-threonine transaldolase (PsLTTA, CsLTTA, BuLTTA and XrLTTA) were screened for synthesizing of **2**. Transaldol reaction was performed in a 1 ml volume comprising 6 mM of L-threonine, 5 mM of **1**, 0.1 mM of PLP and 25 mg of whole-cell catalyst in Tris-HCl buffer (50 mM, pH 7.5) and incubated at 30°C with shaking for 2 h. After reaction, the pellets were removed by centrifugation and the supernatant was submitted for evaluating the conversion and stereoselectivity of **2** by chromatography analysis.

28

29 Figure S2.

30

Figure S2. Based on the crystal structure of ObiH (PDB code: 7K34), the catalytic 31 mode of L-threonine transaldolase was a multi-stage reaction following a Ping-Pong 32 mechanism. The reaction is initiated by the binding of L-threonine to 33 phosphopyridoxal (PLP) to form an external aldimine of L-threonine (Aex^{Thr}) and a 34 re-aldol cleavage is followed to produce a highly basic glycyl quinonoid intermediate 35 Q^{Gly} and acetaldehyde. Then Q^{Gly} attacks on substrate aldehyde to form an external 36 aldimine of β -hydroxy- α -amino acid (Aex^{β -hydroxy- α -amino acid) and the reintegration of} 37 catalytic residue K234 with PLP is occurred to form an internal aldimine (Ain), 38 leading to the release of β -hydroxy- α -amino acids. 39

42

43 Figure S3. The activities of PsLTTA variants were screened by high-throughput 44 screening method. The reaction catalyzed by wild-type PsLTTA (Mu0) was used as a 45 control. All experiments were conducted in triplicate and the results were represented 46 as the mean \pm standard deviation.

48 Figure S4.

50 Figure S4. (A) SDS-PAGE analysis of PsLTTA-Mu0 and PsLTTA-Mu9. Lane 1, 51 whole cell extract of PsLTTA-Mu0; Lane 2, purified PsLTTA-Mu0; Lane 3, whole 52 cell extract of PsLTTA-Mu9; Lane 4, purified PsLTTA-Mu9. (B) The purified 53 PsLTTA-Mu0 and PsLTTA-Mu9 were pink in solution.

- 54
- 55

58 Figure S5. The kinetic plots of PsLTTA-Mu0 and PsLTTA-Mu9 toward substrates 1

59 and L-threonine. V: reaction rate; [S]: substrate concentration.

61 Figure S6.

62

63 Figure S6. Conformation maps of Mul-Q^{Gly}-1. The limit of "catalytic distance"

64 $d(O_{sub}-ND1_{H131}) \le 4.0$ Å and $d(C_{sub}-C_{\alpha-Q^{Giy}}) \le 3.5$ Å are colored by green.

66 Figure S7.

67

Figure S7. The yield and *de* of 2 synthesized by whole-cell catalyst BL21(PsLTTAMu0), BL21(PsLTTA-Mu9), BL21(PsLTTA-Mu0/ScADH/CbFDH) and
BL21(PsLTTA-Mu9/ScADH/CbFDH).

73 Figure S8.

Figure S8. The optimization of co-solvents addition on the synthesis of 2. Transaldol reaction was performed at 30 °C and 200 rpm for 2 h, in 1 mL of Tris-HCl buffer (50 mM, pH 7.5) containing 50 mg/mL of whole-cell catalyst, 200 mM 1, 220 mM Lthreonine, 250 mM sodium formate, 0.1 mM PLP and 0.3 mM NAD⁺. The conversion and stereospecificity of 2 were detected by chromatography analysis.

81 Figure S9.

82

Figure S9. HPLC chromatogram of sample from bio-catalysis of 1 to 2 with whole
cell catalyst BL21(PsLTTA-Mu9/ScADH/CbFDH). (A) HPLC chromatogram of 2
standard (t=3.6 min). (B) HPLC chromatogram of 1 standard (t=6.1 min). (C) HPLC
chromatogram of sample catalyzed by whole cell catalyst BL21(PsLTTAMu9/ScADH/CbFDH).

89 Figure S10.

Figure **S10**. Chiral HPLC chromatograms of 2-amino-3-hydroxy-3-(4-91 nitrophenyl)propanoic acid. (A) Transaldol reaction catalyzed by whole cell catalyst 92 BL21(PsLTTA-Mu9/ScADH/CbFDH) with 98.9% de. 2-amino-3-hydroxy-3-(4-93 nitrophenyl)propanoic acid ($t_{(2S, 3R)}=15.3$ min, $t_{(2S, 3S)}=19.2$ min). (B) Transaldol 94 reaction catalyzed L-Threonine aldolase with 62% de was selected as a control. 2-95 amino-3-hydroxy-3-(4-nitrophenyl)propanoic acid ($t_{(2S, 3R)}=15.2$ min, $t_{(2S, 3S)}=19.1$ 96 97 min).

98

99 Figure S11.

106 Figure S12.

113 Figure S13.

121 Figure S14.

