1 Supporting Information

2
3 A chemo-enzymatic strategy for efficient synthesis of 4 amphenicol antibiotic chloramphenicol mediated by an 5 engineered L-threonine transaldolase with high activity and

6 stereoselectivity

7

8
Lian Xu, Dan Nie, Bing-Mei Su, Xin-Qi Xu, Juan Lin *
9

10 College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116,
11 China.

12
13 * To whom correspondence should be addressed: ljuan@fzu.edu.cn (Juan Lin).

14

15 Running title: Chemo-enzymatic strategy for synthesis of chloramphenicol

Table S1. Primers used for site-directed mutagenesis of PsLTTA.

Primer	Sequence ($5^{\prime}-3$ ')
N35A F ${ }^{\text {a }}$	GACCGCAgcaGAAAATTATCCGAGCGC
N35A R	AATTTTCtgcTGCGGTCAGGCTCAGGC
N35S F	GACCGCAagcGAAAATTATCCGAGCGC
N35S R	AATTTTCgctTGCGGTCAGGCTCAGGC
N35C F	GACCGCAtgtGAAAATTATCCGAGCGC
N35C R	AATTTTCacaTGCGGTCAGGCTCAGGC
N35V F	GACCGCAgttGAAAATTATCCGAGCGC
N35V R	AATTTTCaacTGCGGTCAGGCTCAGGC
N35IF	GACCGCAattGAAAATTATCCGAGCGC
N35I R	AATTTTCaatTGCGGTCAGGCTCAGGC
N35G F	GACCGCAggcGAAAATTATCCGAGCGC
N35G R	AATTTTCgccTGCGGTCAGGCTCAGGC
Y55N F	GCATTTaatCATTGTAGCTTTCCGTTT
Y55N R	ACAATGattAAATGCGCCTGCGGTGCT
Y55L F	GCATTTctgCATTGTAGCTTTCCGTTT
Y55L R	ACAATGcagAAATGCGCCTGCGGTGCT
Y55T F	GCATTTaccCATTGTAGCTTTCCGTTT
Y55T R	ACAATGggtAAATGCGCCTGCGGTGCT
Y55S F	GCATTTagcCATTGTAGCTTTCCGTTT
Y55S R	ACAATGgctAAATGCGCCTGCGGTGCT
Y55A F	GCATTTgcaCATTGTAGCTTTCCGTTT
Y55A R	ACAATGtgcAAATGCGCCTGCGGTGCT
C57I F	TTATCATattAGCTTTCCGTTTGAAGTTCC
C57I R	GAAAGCTaatATGATAAAATGCGCCTGC
C57M F	TTATCATatgAGCTTTCCGTTTGAAGTTCC
C57M R	GAAAGCTcatATGATAAAATGCGCCTGC
C57V F	TTATCATgttAGCTTTCCGTTTGAAGTTCC
C57V R	GAAAGCTaacATGATAAAATGCGCCTGC
C57A F	TTATCATgcaAGCTTTCCGTTTGAAGTTCC
C57A R	GAAAGCTtgcATGATAAAATGCGCCTGC
F59A F	TGTAGCgcaCCGTTTGAAGTTCCGGCA
F59A R	AAACGGtgcGCTACAATGATAAAATGC
F59IF	TGTAGCattCCGTTTGAAGTTCCGGCA
F59I R	AAACGGaatGCTACAATGATAAAATGC
F59V F	TGTAGCgttCCGTTTGAAGTTCCGGCA
F59V R	AAACGGaacGCTACAATGATAAAATGC
F59S F	TGTAGCagcCCGTTTGAAGTTCCGGCA
F59S R	AAACGGgctGCTACAATGATAAAATGC
F59L F	TGTAGCctgCCGTTTGAAGTTCCGGCA
F59L R	AAACGGcagGCTACAATGATAAAATGC
C57I-F59A F	TATCATattAGCgcaCCGTTTGAAGTTCCGGCA
C57I-F59A R	AAACGGtgcGCTaatATGATAAAATGCGCCTGC
F61A F	TTTCCGgcaGAAGTTCCGGCAGGCGAA
F61A R	AACTTCtgcCGGAAAGCTACAATGATA
F61I F	TTTCCGattGAAGTTCCGGCAGGCGAA
F61I R	AACTTCaatCGGAAAGCTACAATGATA
F61V F	TTTCCGgttGAAGTTCCGGCAGGCGAA
F61V R	AACTTCaacCGGAAAGCTACAATGATA
F61S F	TTTCCGagcGAAGTTCCGGCAGGCGAA
F61S R	AACTTCgctCGGAAAGCTACAATGATA
F61L F	TTTCCGctgGAAGTTCCGGCAGGCGAA
F61L R	AACTTCcagCGGAAAGCTACAATGATA
P64A F	GAAGTTagcGCAGGCGAATGGCATTTT
P64A R	GCCTGCgctAACTTCAAACGGAAAGCT

P64A F P64A R
P64G F
P64G R
P64V F
P64V R
W68A F
W68A R
W68F F
W68F R
W68L F
W68L R
W68Q F
W68Q R
W68S F
W68S R
H69F F
H69F R
H69Y F
H69Y R
H69V F
H69V R
H69L F
H69L R
H69A F
H69A R
H69I F
H69I R
H126A F
H126A R
H126T F
H126T R
H126S F
H126S R
H126L F
H126L R
H132A F
H132A R
H132V F
H132V R
H132L F
H132L R
H132N F
H132N R
S180V F
S180V R
S180I F
S180I R
S180A F
S180AR
S180G F
S180G R
S180V F
S180V R
C262A F
C262AR
C262I F

GAAGTTagcGCAGGCGAATGGCATTTT
GCCTGCgctAACTTCAAACGGAAAGCT GAAGTTggtGCAGGCGAATGGCATTTT GCCTGCaccAACTTCAAACGGAAAGCT GAAGTTgttGCAGGCGAATGGCATTTT GCCTGCaacAACTTCAAACGGAAAGCT GGCGAAgcaCATTTTCCGGAACCGGGT AAAATGtgcTTCGCCTGCCGGAACTTCAAA GGCGAAtttCATTTTCCGGAACCGGGT AAAATGaaaTTCGCCTGCCGGAACTTCAAA GGCGAActgCATTTTCCGGAACCGGGT AAAATGcagTTCGCCTGCCGGAACTTCAAA GGCGAAcagCATTTTCCGGAACCGGGT AAAATGctgTTCGCCTGCCGGAACTTCAAA GGCGAAagcCATTTTCCGGAACCGGGT AAAATGgctTTCGCCTGCCGGAACTTCAAA GAATGGtttTTTCCGGAACCGGGTCAT CGGAAAaaaCCATTCGCCTGCCGGAAC GAATGGtatTTTCCGGAACCGGGTCAT CGGAAAataCCATTCGCCTGCCGGAAC GAATGGgttTTTCCGGAACCGGGTCAT CGGAAAaacCCATTCGCCTGCCGGAAC GAATGGctgTTTCCGGAACCGGGTCAT CGGAAAcagCCATTCGCCTGCCGGAAC GAATGGgcaTTTCCGGAACCGGGTCAT CGGAAAtgcCCATTCGCCTGCCGGAAC GAATGGattTTTCCGGAACCGGGTCAT CGGAAAaatCCATTCGCCTGCCGGAAC TTTGCAgcaCGTGATGGTGGTCATTTTGCC ATCACGtgcTGCAAAATGAACAAAACCTTC TTTGCAaccCGTGATGGTGGTCATTTTGCC ATCACGggtTGCAAAATGAACAAAACCTTC TTTGCAagcCGTGATGGTGGTCATTTTGCC ATCACGgctTGCAAAATGAACAAAACCTTC TTTGCActgCGTGATGGTGGTCATTTTGCC ATCACGcagTGCAAAATGAACAAAACCTTC GGTCATgcaGCCCTGGAAAGCCTGGCA CAGGGCtgcATGACCACCATCACGATG GGTCATgttGCCCTGGAAAGCCTGGCA CAGGGCaacATGACCACCATCACGATG GGTCATctgGCCCTGGAAAGCCTGGCA CAGGGCcagATGACCACCATCACGATG GGTCATaatGCCCTGGAAAGCCTGGCA CAGGGCattATGACCACCATCACGATG GACCAGgttTTTAAACTGCGTTGGCAG TTTAAAaacCTGGTCCAGAATAACAATACGAAT GACCAGattTTTAAACTGCGTTGGCAG TTTAAAaatCTGGTCCAGAATAACAATACGAAT GACCAGgcaTTTAAACTGCGTTGGCAG TTTAAAtgcCTGGTCCAGAATAACAATACGAAT GACCAGggcTTTAAACTGCGTTGGCAG TTTAAAgccCTGGTCCAGAATAACAATACGAAT GACCAGgttTTTAAACTGCGTTGGCAG TTTAAAaacCTGGTCCAGAATAACAATACGAAT TGGGTTgcaCCGCATCTGCAGAGCAAT ATGCGGtgcAACCCACAGGCTGGTATC TGGGTTattCCGCATCTGCAGAGCAAT

C262I R	ATGCGGaatAACCCACAGGCTGGTATC
C262V F	TGGGTTgttCCGCATCTGCAGAGCAAT
C262V R	ATGCGGaacAACCCACAGGCTGGTATC
C262L F	TGGGTTctgCCGCATCTGCAGAGCAAT
C262L R	ATGCGGcagAACCCACAGGCTGGTATC
P263A F	GTTTGTgcaCATCTGCAGAGCAATTGT
P263A R	CAGATGtgcACAAACCCACAGGCTGGT
P263G F	GTTTGTggcCATCTGCAGAGCAATTGT
P263G R	CAGATGgccACAAACCCACAGGCTGGT
P263V F	GTTTGTgttCATCTGCAGAGCAATTGT
P263V R	CAGATGaacACAAACCCACAGGCTGGT
S267A F	TGCAGgcaAATTGTCATGCCGAACAGCTGC
S267A R	CAATTtgcGATGCGGACAAACCCACAGG
S267V F	TGCAGgttAATTGTCATGCCGAACAGCTGC
S267V R	CAATTaacGATGCGGACAAACCCACAGG
S267G F	TGCAGggcAATTGTCATGCCGAACAGCTGC
S267G R	CAATTgccGATGCGGACAAACCCACAGG
S267I F	TGCAGattAATTGTCATGCCGAACAGCTGC
S267I R	CAATTaatGATGCGGACAAACCCACAGG

$17{ }^{\text {a }}$: the replacement nucleotide sequences were shown in lower case text.

21 Figure S1. Four L-threonine transaldolase (PsLTTA, CsLTTA, BuLTTA and 22 XrLTTA) were screened for synthesizing of $\mathbf{2}$. Transaldol reaction was performed in a 231 ml volume comprising 6 mM of L-threonine, 5 mM of $\mathbf{1}, 0.1 \mathrm{mM}$ of PLP and 25 mg 24 of whole-cell catalyst in Tris- HCl buffer $(50 \mathrm{mM}, \mathrm{pH} 7.5)$ and incubated at $30^{\circ} \mathrm{C}$ with 25 shaking for 2 h . After reaction, the pellets were removed by centrifugation and the supernatant was submitted for evaluating the conversion and stereoselectivity of $\mathbf{2}$ by chromatography analysis.

Figure S2.

Figure S3.

Figure S3. The activities of PsLTTA variants were screened by high-throughput screening method. The reaction catalyzed by wild-type PsLTTA (Mu0) was used as a control. All experiments were conducted in triplicate and the results were represented 46 as the mean \pm standard deviation.

Figure S4.

53 PsLTTA-Mu0 and PsLTTA-Mu9 were pink in solution.
54
55

Figure S4. (A) SDS-PAGE analysis of PsLTTA-Mu0 and PsLTTA-Mu9. Lane 1, whole cell extract of PsLTTA-Mu0; Lane 2, purified PsLTTA-Mu0; Lane 3, whole cell extract of PsLTTA-Mu9; Lane 4, purified PsLTTA-Mu9. (B) The purified

56 Figure S5.

Figure S5. The kinetic plots of PsLTTA-Mu0 and PsLTTA-Mu9 toward substrates $\mathbf{1}$

59 and L-threonine. V: reaction rate; [S]: substrate concentration.

61 Figure S6.

Figure S6. Conformation maps of Mu1-Q ${ }^{\text {Gly }} \mathbf{- 1}$. The limit of "catalytic distance"
$64 \mathrm{~d}\left(\mathrm{O}_{\text {sub }}-\mathrm{ND} 1_{\mathrm{H} 131}\right)<4.0 \AA$ and $\mathrm{d}\left(\mathrm{C}_{\text {sub }}-\mathrm{C}_{\alpha-\mathrm{Q}} \mathrm{Q}^{\mathrm{ari}}\right)<3.5 \AA$ are colored by green.

Figure S7.

68 Figure S7. The yield and de of 2 synthesized by whole-cell catalyst BL21(PsLTTA-
$69 \mathrm{Mu} 0)$, BL21(PsLTTA-Mu9), BL21(PsLTTA-Mu0/ScADH/CbFDH) and

70 BL21(PsLTTA-Mu9/ScADH/CbFDH).

Figure S8.
 and stereospecificity of 2 were detected by chromatography analysis.

81 Figure S9.

Figure S9. HPLC chromatogram of sample from bio-catalysis of $\mathbf{1}$ to $\mathbf{2}$ with whole

84 cell catalyst BL21(PsLTTA-Mu9/ScADH/CbFDH). (A) HPLC chromatogram of 2

85 standard ($\mathrm{t}=3.6 \mathrm{~min}$). (B) HPLC chromatogram of 1 standard ($\mathrm{t}=6.1 \mathrm{~min}$). (C) HPLC

86 chromatogram of sample catalyzed by whole cell catalyst BL21(PsLTTA-
$87 \mathrm{Mu} 9 / \mathrm{ScADH} / \mathrm{CbFDH})$.

91 Figure S10. Chiral HPLC chromatograms of 2-amino-3-hydroxy-3-(4-

92 nitrophenyl)propanoic acid. (A) Transaldol reaction catalyzed by whole cell catalyst

93 BL21(PsLTTA-Mu9/ScADH/CbFDH) with 98.9% de. 2-amino-3-hydroxy-3-(494 nitrophenyl)propanoic acid $\left(\mathrm{t}_{(2 \mathrm{~S}, 3 \mathrm{R})}=15.3 \mathrm{~min}, \mathrm{t}_{(2 \mathrm{~S}, 3 \mathrm{~S})}=19.2 \mathrm{~min}\right)$. (B) Transaldol 95 reaction catalyzed L-Threonine aldolase with 62% de was selected as a control. 296 amino-3-hydroxy-3-(4-nitrophenyl)propanoic acid $\left(\mathrm{t}_{(2 \mathrm{~S}, 3 \mathrm{R})}=15.2 \mathrm{~min}, \mathrm{t}_{(2 \mathrm{~S}, 3 \mathrm{~S})}=19.1\right.$ $97 \mathrm{~min})$.

99 Figure S11.

100

101 $103=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H})$ nitrophenyl)propanoic acid (2). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})=8.18(\mathrm{~d}, J$

Figure S12.

Figure S12. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of ethyl (2S,3R)-2-amino-3-hydroxy-3-(4109 nitrophenyl)propanoate (3). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm})=8.18(\mathrm{~d}, J=$ $1108.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J$ $111=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

113 Figure S13.

$\int\|\|\|$

115 Figure S13. ${ }^{1} \mathrm{H}$ - NMR spectra of (1R,2R)-2-amino-1-(4-nitrophenyl)propane-1,3-diol 116 (4). ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm})=8.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $1179.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=10.2$, $1185.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{q}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.47(\mathrm{~m}$, 119 2H).

121 Figure S14.

Figure S14. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 2,2-dichloro-N-((1R,2R)-1,3-dihydroxy-1-(4124 nitrophenyl)propan-2-yl)acetamide (5). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm})=$ $1258.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~s}$, $1 \mathrm{H}), 5.99(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{dd}, J=6.0,4.8 \mathrm{~Hz}$,

[^0]
[^0]: $1 \mathrm{H}), 4.11-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 1 \mathrm{H})$.

