Supporting Information

for

Oxygen-Incorporated 3D flower-like MoS₂ microsphere as a bifunctional catalyst for effectively synthesis of 2,5diformyfuran from fructose

Zhenzhen Yang, Yuhan He, Pengfei Tang, Chenhui Xu, Genlei Zhang *, Jianbo He *

School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Anhui Province Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, Hefei University of Technology, Hefei, 230009, PR China.

Corresponding Author:

* E-mail: genleizhang@hfut.edu.cn

jbhe@hfut.edu.cn

Contents:

1. The EDS quantitative analysis result of the as-prepared oxygen-incorporated 3D flower-like MoS₂ microspheres.

2. The results of leaching tests of MoS_2 .

3. The high-resolution Mo 3d spectra and O 1s spectra of MoS₂-O₂ and MoS₂-N₂.

4. The contents of Mo^{4+} and Mo^{6+} species, and O_{α} and O_{β} species on the surface of fresh MoS_2 , MoS_2 - O_2 and MoS_2 - N_2 .

5. The results of MoS_2 -catalyzed dehydration of fructose to HMF under O_2 and N_2 atmosphere.

6. Recycled experiments under the optimal conditions for one-pot conversion of fructose to DFF catalyzed by MoS₂.

7. Comparison of the as-prepared MoS_2 catalyst with literature reported bifunctional catalysts for "one-pot" synthesis of DFF from fructose.

Figure S1. The EDS quantitative analysis result of the as-prepared oxygenincorporated 3D flower-like MoS_2 microspheres.

Figure S2. Leaching experiments at the optimum conditions for the oxidation of HMF to DFF catalyzed by MoS_2 . Reaction conditions: HMF 0.126 g (1 mmol), MoS_2 50 mg, DMSO 4 mL, 120 °C.

Figure S3. The high-resolution Mo 3d spectra of (a) MoS_2-O_2 and (b) MoS_2-N_2 , and the high-resolution O 1s spectra of (c) MoS_2-O_2 and (d) MoS_2-N_2 .

Table S1. The contents of Mo^{4+} and Mo^{6+} species, and O_{α} and O_{β} species on the surface of fresh MoS_2 , MoS_2 - O_2 and MoS_2 - N_2 .

Entry	Catalyst	Mo ⁴⁺ (%)	${ m Mo^{6+}}(\%)$	O_{α}	O_{β}
1	fresh MoS ₂	95.68	4.32	0.74	0.26
2	MoS_2-O_2	95.79	4.21	0.24	0.76
3	MoS_2-N_2	96.64	3.36	0.09	0.91

Figure S4. The results of MoS_2 -catalyzed dehydration of fructose to HMF under (a) O_2 and (a) N_2 atmosphere. Reaction conditions: fructose 0.180 g (1 mmol), MoS_2 50 mg, DMSO 4 mL, 120 °C.

Figure S5. Recycled experiments under the optimal conditions for one-pot conversion of fructose to DFF catalyzed by MoS₂. Reaction conditions: fructose (1 mmol), MoS₂ (50 mg), DMSO (4 mL), N₂ flow rate (20 mL min⁻¹), O₂ flow rate (20 mL min⁻¹), temperature/time: 120 °C/6h.

Entry	Catalyst	Oxidant	Solvent	Reaction steps	Yield	Ref.
1	a-MoO ₃	Air	DMSO	One step	78.3%	35
2	Sulfonated MoO ₃ - ZrO ₂	O ₂	DMSO	One step	74%	36
3	MoO _x /CS-air	O_2	DMSO	One step	77.8%	37
4	$f-Ce_9Mo_1O_\delta$	O_2	DMSO	Two steps	74%	38
5	Mo-HNC	O_2	DMSO	One step	77%	39
6	β-Mo ₂ C@C	O_2	DMSO	Two steps	76.0%	40
7	GO	O_2	DMSO	Two steps	72.5%	49
8	Carbon nanoplatelets	O ₂	DMSO	One step	70.3%	50
9	PMA-MIL-101	O_2	DMSO	One step	75.1%	51
10	MoS_2	O ₂	DMSO	Two steps	81.3%	This work

Table S5. Comparison of the as-prepared MoS_2 catalyst with literature reportedbifunctional catalysts for "one-pot" synthesis of DFF from fructose.