Supporting Information

Promotional role of NiCu alloy in catalytic performance and carbon properties for CO₂-free H₂ production from thermocatalytic decomposition of methane

Mengze Xu ^{a,1}, Juan Lopez-Ruiz ^{a,1}, Nickolas W. Riedel ^{a,1}, Robert S. Weber ^{a,1}, Mark E. Bowden ^b, Libor Kovarik ^b, Changle Jiang ^c, Jianli Hu ^{c,} and Robert A. Dagle ^{a*}

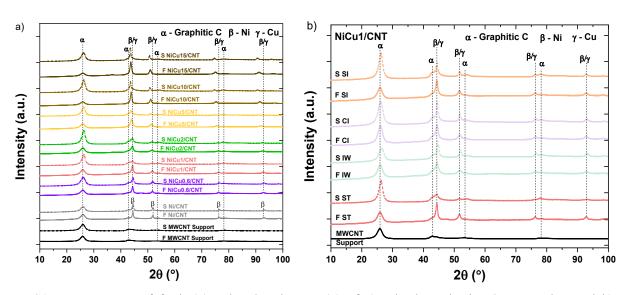
^a Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, USA

^b Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA

^c Department of Chemical & Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA

*Correspondence to: <u>Robert.Dagle@pnnl.gov</u>

Number of pages: 10


Number of Tables: 4

Number of Figures: 9

Table S1. Physiochemical properties of different support CNTs and solvothermal catalysts (which used raw CNTs as support). Fresh catalysts were reduced at 400 °C for 4 h.

Catalysts Fresh reduced	Metal load	BET surface area (m ² ·g ⁻¹)		
(Solvothermal)	Ni	Cu		
Raw CNT	-	-	161	
HCNT	-	-	187	
Ni/CNT	8.80	-	133	
NiCu0.6/CNT	8.91	0.45	140	
NiCu1/CNT	8.96	0.86	147	
NiCu2/CNT	10.42	1.87	142	
NiCu5/CNT	8.99	5.25	137	
NiCu10/CNT	9.66	8.74	128	
NiCu15/CNT	10.38	13.89	154	

^a Results derived from ICP

Figure S1. XRD patterns of fresh (F) reduced and spent (S) of a) solvothermal NiCu_x/CNT catalyst and b) Ni1Cu_x/CNT catalyst prepared by different synthesis method such as incipient wetness (IW), co-impregnation (CI), and sequential impregnation (SI). The fresh catalysts were reduced at 400 °C for 4 h in 5 vol% H_2 in N_2 . The spent catalysts were retrieved after reaction at 600 °C under 30 cm³/min 30 vol% CH_4 in N_2 .

Table S2. Crystallite sizes and metal phases of solvothermal catalysts NiCux/CNT (x= 0, 0.6, 1, 2, 5, 10, and 15) based on XRD analysis. Fresh catalysts were reduced at 400 °C for 4 h. Spent catalysts were retrieved after reaction at 600°C under 30 cm³/min 30 vol% CH₄/N₂.

Catalysts			Fı	resh				\$	Change, %					
	ICP	Meta	ıl oxide ^a		Ni-rich alloy			Ni-rich a	lloy		Cu-rich a	lloy	Crysta-	Ni/Cu
	Ni/Cu	wt.%	Crysta-	wt.%	Ni/Cu	Crysta-	wt.%	Ni/Cu	Crysta-	wt.%	Ni/Cu	Crysta-	llite	Ratio
	(mol/	(%)	llite size	(%)	(mol/	llite size	(%)	(mol/	llite size,	(%)	(mol/	llite size	Size	
	mol)		(nm)		mol)	(nm)		mol)	(nm)		mol)	(nm)		
Ni	-	0	-	100	-	11.8	100	-	16.9	-	-	-	43.2	-
NiCu0.6	21.4	0	-	100	52.7	13.1	100	44.6	17.8	-	-	-	35.9	-15.4
NiCu1	11.3	0	-	100	24.3	11.0	100	17.6	9.4	-	-	-	-14.6	-27.6
NiCu2	6.03	18	4.6	88	9.99	10.5	90	6.66	12.5	10	0.9	25.0	19.0	-33.3
NiCu5	1.85	0	-	100	2.11	7.30	32	5.00	10.6	68	0.4	22.0	45.2	137
NiCu10	1.20	12	6.5	84	1.17	11.9	100	0.248	12.7	-	-	-	6.7	-78.8
NiCu15	0.809	12		88	0.790	8.60	100	0.254	17.2	-	-	-	100	-67.9

^a The presence of the metal oxide (e.g., NiO, CuO, Cu₂O) might be a result of the passivation step used after catalyst reduction and exposure to air.

Table S3. Crystallite sizes and metal phases of NiCu1 catalysts prepared by different synthesis methods based on XRD analysis. Fresh catalysts were reduced at 400 °C for 4 h. Spent catalysts were retrieved after reaction at 600 °C under 30 cm³/min 30 vol% CH_4 in N_2 .

			Spent										
Catalysts	Metal loading ^a (%)		Ni/Cu ^a BET (mol/ (m²/g)		Metal oxide ^b		Ni-rich alloy ^b			Ni-rich alloy ^b			
	Ni	Cu	mol)	(m-/g)	wt.%	Particle size/nm	wt.%	Ni/Cu (mol/mol)	Particle size/nm	wt. %	Ni/Cu (mol/mol)	Particle size/nm	
NiCu1/CNT (ST)	8.96	0.86	11.3	147	0	0 -		24.3	11.0	100	19	9.4	
NiCu1/HCNT (IW)	13.1	1.33	10.7	214	24	4.3	76	13.0	8.0	100	32	10.6	
NiCu1/HCNT (CI)	10.3	0.95	11.8	217	0	-	100	19.3	7.4	100	49	9.3	
Cu1Ni/HCNT (SI)	10.9	1.07	11.1	226	0	-	100	20.2	8.4	100	19	15.1	

^a Results derived from ICP

^b Results derived from XRD analysis

Table S4. Fitting parameters for deactivation at solvothermal catalysts run at different temperatures (550, 600, 650, and 700 °C) and the carbon co-product that accumulates at the indicated time on stream, θ . The catalyst sample weighed 0.2 g so all but one of the samples (Ni/CNT (ST) accumulated an amount of carbon that exceeded the mass of the MWCNT support (i.e., <0.18 g)at the indicated, final time on stream.

Catalyst	Cu mol fraction	Temperature (°C)	$X_{0}(\%)$	k (h ^{-0.5})	θ (h)	Actual Carbon Yield (g _C /g _{cat})	Predicted Carbon Yield (gc/gcat)
		550	56.3	0.373	5	24.3	24.4
NI:/CNIT (CT)	0	600	135	3.09	0.87	0.282	0.251
Ni/CNT (ST)	0	650	6094	22.1	0.67	0.268	0.228
		700	30.3	5.04	1	0.0235	0.0210
		550	29.40	0.0787	5	3.50	1.71
NiCu1/CNT	0.001	600	62.6	0.309	5	2.52	2.61
(ST)	0.081	650	225	4.50	0.53	0.266	0.187
		700	n/a	n/a	-	-	-
		550	27.1	0.0943	5	1.88	1.55
NiCu15/CNT (ST)	0.552	600	32.1	0.0561	5	1.93	1.94
	0.553	650	53.0	0.0150	5	3.11	3.39
		700	88.6	1.68	4.3	1.24	0.666

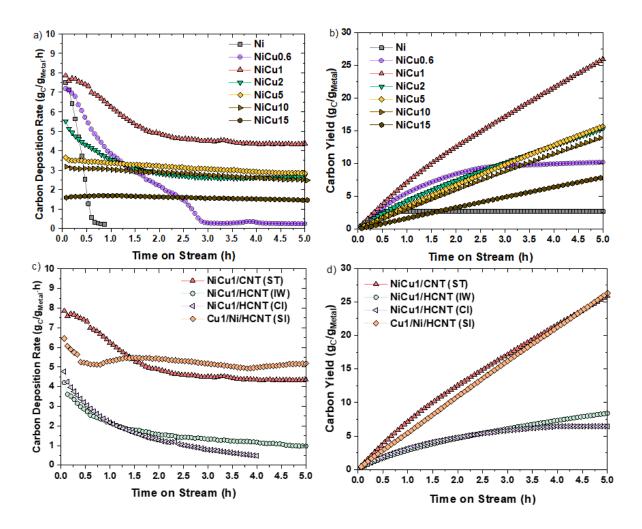
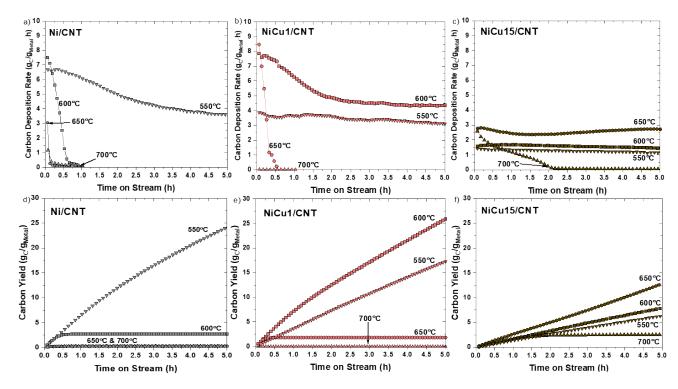



Figure S2. Activity of a-b) NiCux/CNT (x= 0, 0.6, 1, 2, 5, 10, 15) synthesized by solvothermal (ST) method and c-d) NiCu1/CNT prepared by different synthesis methods [incipient wetness (IW), co-impregnation (CI), sequential-impregnation (SI)] as a function of time on stream at reaction temperature of 600 °C under 30 cm³/min 30 vol% CH₄ in N₂. GHSV \approx 3000 h⁻¹. The background activity of the raw CNT was <0.2% CH₄ conversion.

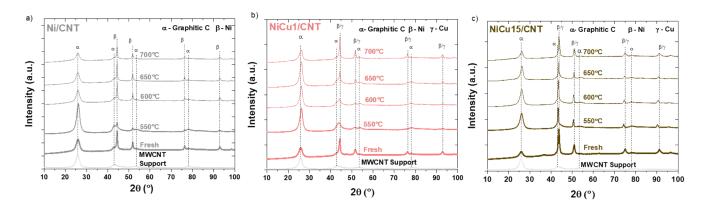
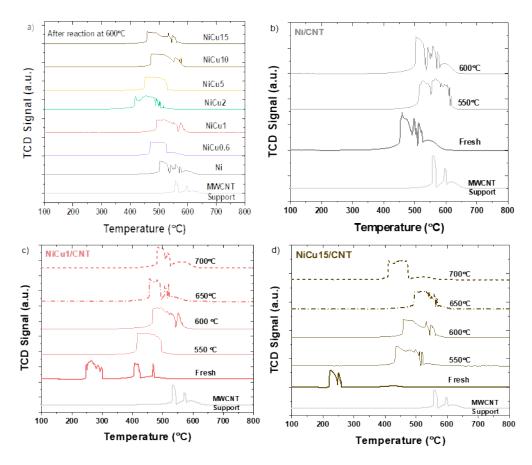
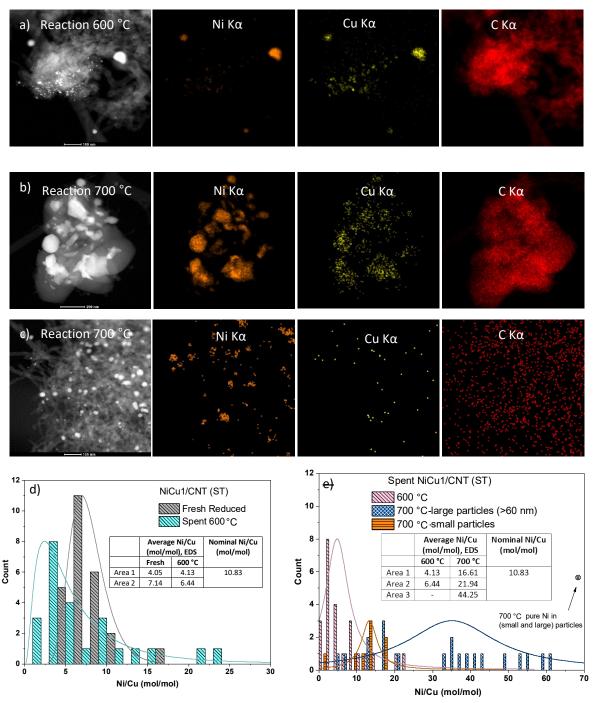
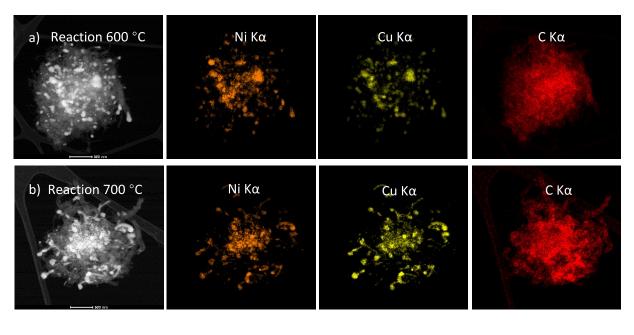


Figure S3. a-c) carbon deposition rate and d-e) carbon yield for Ni/CNT, NiCu1/CNT, and NiCu15/CNT at different reaction temperature (550 to 700°C) as a function of time on stream (SOT) under 30 cm³/min 30 vol.% CH₄ in N₂.


Table S5. Crystallite sizes and composition of spent solvothermal Ni/CNT, NiCu1/CNT, and NiCu15/CNT catalysts based on XRD analysis. The spent catalysts were retrieved after reaction at different temperatures (550, 600, 650, and 700°C) under 30 cm³/min 30 vol.% CH_4 in N_2 .

	550°C				600°C				65	700 °C					
	N	i-rich allo	ру	1	Ni-rich alloy			Ni-rich alloy			u-rich al	loy	Ni-rich alloy		
Spent catalysts	wt.%	Ni/Cu	Crysta	wt.%	Ni/Cu	Crysta-	wt%	Ni/Cu	Crysta-	wt.%	Ni/Cu	Crysta-	wt.%	Ni/Cu	Crysta-
	(%)	(mol/	-llite	(%)	(mol/	llite size	(%)	(mol/	llite size	(%)	(mol/	llite size	(%)	(mol/	llite size
		mol)	size		mol)	(nm)		mol)	(nm)		mol)	(nm)		mol)	(nm)
			(nm)												
Ni/CNCT (ST)	100	-	9.20	100	-	16.9	100	-	18.3	-	-		100	-	14.6
NiCu1/CNT (ST)	BDLa	BDLa	BDLa	100	17.6	9.40	87	∞	19.4	13.	2.80	27.0	100	19.7	14.6
NiCu15/CNT (ST)	100	0.133	21.4	100	0.254	17.2	100	0.418	21.5	-	-	-	100	0.676	10.4


^a Below Detection Limit: The features of the metal were too dilute due to carbon formation and potential metal fragmentation and crystallite properties could not be determined.


Figure S4. XRD patterns of a) Ni/CNT, b) NiCu1/CNT, and c) NiCu15 prepared by solvothermal synthesis at different reaction temperature under 30 cm 3 /min 30 vol.% CH $_4$ in N $_2$.

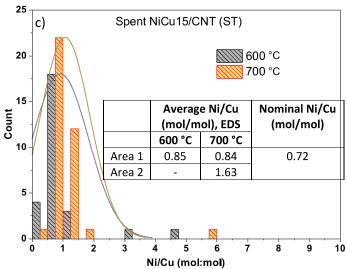


Figure S5. TPO plots of spent solvothermal catalysts retrieved after reaction. a) NiCux/CNT (ST) (x=0, 0.6, 1, 2, 5, 10, and 15) at reaction of 600 °C; b) NiCu1/CNT (ST); c) NiCu15/CNT (ST) at different reaction temperatures (600 °C, 650 °C and 700 °C) respectively.

Figure S6. Elemental analysis of spent NiCu1/CNT (ST) after reaction at a) 600° C and b-c) 700° C under 30 cm³/min 30 vol.% CH₄ in N₂. d) is the histogram representing the change in elemental distribution between fresh and spent at 600° C. e) is the histogram representing the change in elemental distribution between spent at 600° C and 700° C.

Figure S7. Elemental analysis of spent NiCu15/CNT (ST) after reaction at a) 600° C and b) 700° C under 30 cm^{3} /min 30 vol.% CH₄ in N₂. c) histogram representing the change in elemental distribution between spent at 600° C and 700° C.

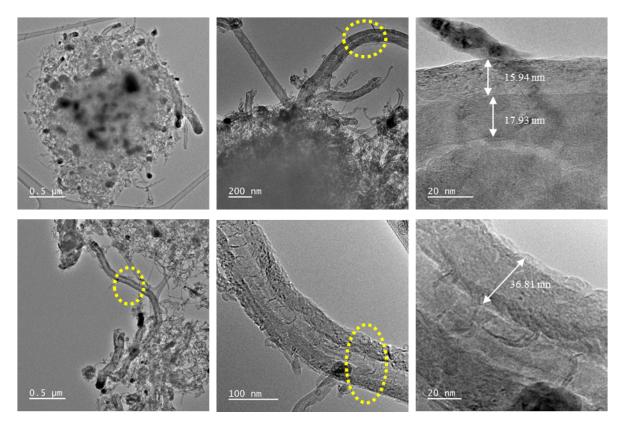


Figure S8. STEM images of spent NiCu15/CNT (ST) at 600°C under 30 cm³/min 30 vol.% CH₄ in N₂.

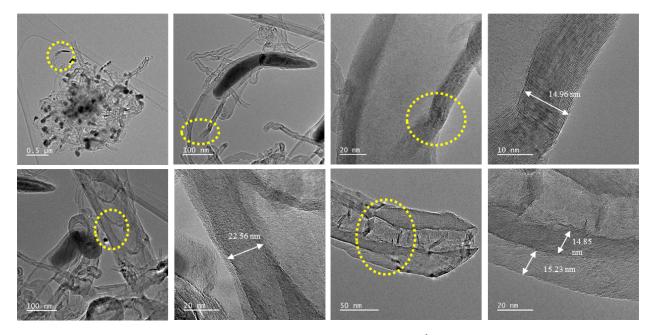


Figure S9. STEM images of spent NiCu15/CNT (ST) at 700°C under 30 cm³/min 30 vol.% CH₄ in N₂.