Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2022

Supporting information

Ammonia formation by reduction of nitrogen monoxide with carbon monoxide using copper-deposited ceria in the presence of water

Keisuke Kobayashi, ^a Yuichi Manaka, ^{*ab} and Tetsuya Nanba ^a

 ^a Renewable Energy Research Centre, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama, Fukushima, 963-0298 JAPAN E-mail: yuichi.manaka@aist.go.jp
^b School of Material and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8522 JAPAN

Catalyst preparation

Copper catalysts were prepared using the incipient wetness approach. CeO₂ (Type A, Daiichi Kigenso Kagaku Kogyo Co., Ltd.), TiO₂ (SSP-M, Sakai Chemical Industry Co., Ltd.), Al₂O₃ (Kojundo Chemical Lab. Co., Ltd.), ZrO₂ (RSC-H, Daiichi Kigenso Kagaku Kogyo Co., Ltd.) and SiO₂ (Q-15, Fiji Silysia Chemical Ltd.) were employed as a support, and Cu(NO₃)₂ (FUJIFILM Wako Pure Chemical Corporation) was employed as a Cu precursor. The sample was calcined at 773 K for 4 h after 1 wt%, 3 wt%, 5 wt%, 10 wt%, 20 wt%, and 40 wt% Cu loading, and then reduced under 10 vol%H₂/N₂ at 673 K for 1 h.

Catalytic reaction

A catalytic activity test was conducted employing a fixed bed flow reactor. The sample used was 0.15 g. The concentration of NO-CO-H₂O reaction was 1000 ppm NO, 3000 ppm CO, and 1% H₂O. Feed gas compositions of WGS reaction, NO-H₂ reaction, and NO-CO reaction were 3000 ppm CO and 1% H₂O, 1000 ppm NO and 3000 ppm H₂, and 1000 ppm NO and 3000 ppm CO with balance Ar, respectively. Product analysis was conducted in the same manner as previously stated.¹

Defuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

During the NO-CO-H₂O reaction, DRIFTS was performed to observe surface intermediate species. An FT-IR (iS50 FT-IR, Thermo Fisher Scientific) equipped with a DRIFT cell (1000 °C Heat Chamber, ST Japan Inc.) was employed. Pretreatment was conducted under 10 vol% H₂ with balanced Ar at 673 K for 0.5 h, and then measurement was performed under 1000 ppm NO, 3000 ppm CO, and 0.5% H₂O at 423 K. The total gas flow was 30 mL/min.

1. K. Kobayashi, R. Atsumi, Y. Manaka, H. Matsumoto and T. Nanba, Catal. Sci. Technol., 2019, 9, 2898.

Fig. S1. NO conversion to NH₃ of X wt% Cu/CeO₂ catalysts (X = 1 wt%(open circle), 3 wt%(open square), 5 wt%(open triangle), 10 wt%(open diamond), 20 wt%(filled triangle), 40 wt% (filled diamond)) under NO-CO-H₂O reaction

Fig. S2. Infrared spectra of the catalyst surface when NO and formic acid are adsorbed on the catalyst at room temperature and then the temperature is increased

Fig. S3a. Catalytic activity of Cu/CeO₂ under NO-CO. a) NO conversion (open circle), and NO conversion to NH₃(open square)

Fig. S3b. Catalytic activity of Cu/CeO₂ under NO-CO. b) N₂ yield (filled circle), N₂O yield (filled square) and CO yield (open triangle)

Fig. S4. Catalytic activity of Cu/CeO_2 under NO-CO-H₂. a) NO conversion (open circle), and NO conversion to NH_3 (open square)