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Chemicals

Zinc acetate dihydrate (Aladdin; AR), Indium(III) chloride tetrahydrate (Macklin; 

AR), Thioacetamide (Macklin; AR), Citric acid (Aladdin; AR), Chromium(III) nitrate 

nonahydrate (Aladdin; AR), Ethanol absolute (SCR; AR), Chloroplatinic acid 

hexahydrate (Aladdin; AR).

Characterization 

An X-ray powder diffractometer (XRD, Empyrean) was used to measure the 

crystalline phases of the prepared samples. A SIGMA 300 field emission scanning 

electron microscope (FESEM) and a JEM-2100F high-resolution transmission electron 

microscope (HRTEM) were used to record their morphology and elemental 

distributions. Their elemental chemical states were examined using an X-ray 

photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha+), and the binding 

energies calibrated to the C1s peak at 284.8 eV. A Shimadzu UV-3600 plus uv-vis 

spectrophotometer was used to obtain their diffuse reflection spectra (DRS). A Hitachi 

F-7000 fluorescence spectrophotometer was used to measure their photoluminescence 

(PL) spectra at room temperature (the excitation wave length was 360 nm). The time-

resolved PL (TRPL) decay spectra were recorded using a FLUOROLOG-3-11 

spectrofluorometer (the excitation wavelength was 370 nm; detection wavelength was 

518 nm; bandwidth was 1.5 nm)). Electron paramagnetic resonance (EPR) spectra were 
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recorded using a Bruker EMXPLUS at room temperature. The molecular structural 

information in the range of 400 - 4000 cm-1 was measured using a NEXUS870 fourier 

transform infrared spectrophotometer (FTIR). The Brunauer-Emmett-Teller (BET) 

surface area was measured using a Micromeritics ASAP2460 analyzer.

Fig. S1 Nitrogen adsorption‐desorption isotherms of the initial ZnIn2S4 and ZnIn2S4-350-4h 
samples.



Fig. S2 S 2p spectra of the ZnIn2S4-350-4h and ZnIn2S4-350-7h samples.



Fig. S3 XPS spectra of Pt 4f peaks (a) and Cr 2p peaks (b).



Fig.S4 TEM elemental mappings of Pt/Cr cocatalysts loaded on the ZnIn2S4-350-4h sample.



Fig. S5 XPS valence band spectra of samples



    

Fig. S6 Photocatalytic overall water splitting rates of the as-prepared samples.



Fig. S7 XPS spectra ((a) Zn 2p peaks, (b) In 3d peaks, (c) S 2p peaks) and XRD patterns (d) of the 
samples before and after photocatalytic overall water splitting.



Table S1 STH efficiency of single-phase ZnIn2S4 reported in literatures.
Activity measurement

Photocatalysts Illumination H2

(mol/g/h)
O2

(mol/g/h)
STH 

efficiency
Ref.

dZni-ZnIn2S4
300W Xe lamp

( ≥ 420 nm)
74.3 35.4 / [1]

Al-ZnIn2S4
300W Xe lamp

( ≥ 420 nm)
77.2 35.3 / [2]

Ag-ZnIn2S4
300W Xe lamp

( > 420 nm)
56.6 29.1 0.003% [3]

ZnIn2S4-800
300W Xe lamp

( ≥ 420 nm)
68.0 31.0 0.021% [4]

ZnIn2S4-350-4h
300W Xe lamp

( ≥ 420 nm)
270.2 130.0 0.035% This work
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