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Chapter S1: detailed description of CO,-TPD, NH;-TPD and TPR
All experiments were carried out on 0.2 g of sample using a Micromeritics Autochem 1l 2920 instrument
equipped with a TCD detector.

$1.1: CO,-TPD

The sample was heated up from room temperature to calcination temperature at a rate of 10 °C/min in a
flow of pure He (30 mL/min) to clean surface of the material from physisorbed and chemisorbed molecules.
The final temperature was kept for 60 min. After cooling down to 40 °C in a pure He flow (30 mL/min), the
chemisorption of CO, was carried out by flowing a 10% CO,/He mixture (30 mL/min) for 60 minutes. After
the chemisorption, the sample was flown with pure He (30 mL/min) for 60 min to remove the weakly
physisorbed probe molecules. Finally, the temperature programmed desorption was carried out by heating
the sample from 40 °C up to calcination temperature at a rate of 10 °C/min in a flow of pure He (30 mL/min);
the final temperature was kept for 60 minutes. In order to remove any traces of water before the TCD
detector, the effluents from the samples were flown through an empty trap immersed in ethylene glycol
cooled down to around -60 °C with liquid N,.

$1.2: NH;-TPD

The sample was heated up from room temperature to calcination temperature at a rate of 10 °C/min in a
flow of pure He (30 mL/min) to clean surface of the material from physisorbed and chemisorbed molecules.
The final temperature was kept for 60 min. After cooling down to 100 °C in a pure He flow (30 mL/min), the
chemisorption of NH; was carried out by flowing a 10% NH3/He mixture (30 mL/min) for 20 minutes. After
the chemisorption, the sample was flown with pure He (30 mL/min) for 60 min to remove the weakly
physisorbed probe molecules. Finally, the temperature programmed desorption was carried out by heating
the sample from 100 °C up to calcination temperature at a rate of 10 °C/min in a flow of pure He (30 mL/min);
the final temperature was kept for 60 minutes. In order to remove any traces of water before the TCD
detector, the effluents from the samples were flown through trap filled with soda lime and kept at room
temperature.

S$1.3: TPR

The sample was heated up from room temperature to calcination temperature at a rate of 10 °C/min to clean
surface of the material from physisorbed and chemisorbed molecules by flowing a 5 % O,/He mixture (30
mL/min). The final temperature was kept for 60 min. After cooling down to 50 °C in a pure He flow (30
mL/min), the sample was flown with a 5% H,/Ar mixture (50 mL/min) for 30 minutes to allow stabilization of
the TCD detector signal. Then, the sample was heated up from 50 °C to calcination temperature at a rate of
10 °C/min and the final temperature was kept for 60 min. In order to remove any traces of water before the
TCD detector, the effluents from the samples were flown through trap filled with a 3A molecular sieve and
kept at room temperature.
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Figure S1: Schematic illustration of the gas-phase plant and the analytical system used to carry out the catalytic tests. Symbols: Pl =
pressure indicator, F = flowmeter, TIC-1 = temperature controller 1 (N, and air inlet), TI = temperature indicator (catalytic bed), TIC2
=temperature controller 2 (reactor outlet), TIC-3 = temperature controller 3 (furnace heating up the reactor).
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Figure S2: X-ray powder diffraction pattern of a) Cu/Fe/O and b) V,05/TiO,.
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Figure S3: X-ray powder diffraction pattern of a) CuO/SiO, and b) y-Fe,0s.
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Figure S4: X-ray powder diffraction pattern of CuO/y-Fe;0s.
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Figure S5: SEM electron image and EDS elemental maps of a) iron, b) copper and c) oxygen for Cu/Fe/O.
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Figure S6: SEM electron image and EDS elemental maps of a) silicon, b) copper and c) oxygen for Cu/SiO,; Raman spectrum
(excitation source diode laser, 785.0 nm) of CuO/SiO,.
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Figure S9: High resolution TEM electron images of CuO/y-Fe;0s.
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Figure S10: results of the ODH of IRA without catalyst depending on the feeding system. Blank run 1 was carried out by vaporizing IRA
in a stainless steel line heated at 250 °C before the reactor; blank run 2 was carried out by feeding IRA directly into the reactor (= 5
cm above the catalytic bed) with a thin stainless steel line. Reaction conditions: temperature = 350 °C, IRA/O,/N, = 5/5/90 mol %,
contact time = 1 second (assuming a volume of catalyst of 1 cm?3). Symbols: Isorosalva Alcohol conversion (X IRA, orange), Oxygen
conversion (X O,, dark red) carbon balance (C-balance, purple), Opalene selectivity (S OPA, light blue), other by-products selectivity (S
Others, black) and COx selectivity (S COx, grey).
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Figure S11: Top: catalytic reactor after blank run 1; Bottom: catalytic reactor after blank run 2.
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Figure S12: a) Temperature programmed desorption profiles of NHz and b) temperature programmed desorption profiles of CO, for

Cu/Fe/0.
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Figure S13: a) Temperature programmed desorption profiles of NHz and b) temperature programmed desorption profiles of CO, for
V,05-TiO,.

Chapter S2: detailed discussion of the TPR characterization of fresh Cu/Fe/O and V,0/TiO,

The TPR profiles for Cu/Fe/O and V,0s/TiO, are shown in Figure S14. The reduction of V,0s/TiO, started
around 390 °C and continued up to 500 °C, when the temperature ramp reached the final isotherm. The
temperature range in which the reduction occurred was in good agreement with previous literature [1],
reporting that the reduction with H, of V°>* cations to V** for V,0s/TiO, materials started around 400 °C and
continued above 500 °C. The H, uptake was 0.58 mL (2.8 mL/g), which corresponded to the reduction of one
third of the V°>* cations to V** (degree of reduction = 33.6 %). Therefore, the reduction of V,05 to VO, was not
complete in these conditions.

On the other hand, Cu/Fe/O was more reducible than V,05/TiO, and its TPR profile displayed three maxima
of H, consumption at 185, 218 and 295 °C plus a very broad band during the final isotherm. According to
literature [2], the CuFe,0, stochiometric spinel is firstly reduced to Cu(0) and Fe;0, between 190 and 400 °C
and then the reduction of Fe;0, to Fe(0) occurs in a broad temperature range (400-700 °C). In our case the
H, uptake until 450 °C was 19.9 mL (96 mL/g), that is enough to reduce all Cu?* to Cu(0) and 28.1 % of Fe3*to
FeZ*, in good agreement with the theoretical value of 33.3 % required to obtain Fe;0, from Fe,0;.
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Figure S14: Temperature programmed reduction profiles for Cu/Fe/O (red) and V,05-TiO, (light blue).

O Ka Fe Ka Cu Ka Fe/Cu
[atom. %] [atom. %] [atom. %] atom. ratio
1 20.53 1.3 78.1 0.02
2 66.53 31.0 2.4 12.9

Figure S15: TEM images and TEM-EDS microanalysis of Cu/Fe/O-AR: a) High resolution TEM image, b) HAADF-STEM image.
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Figure S16: results of the ODH of IRA over y-Fe,0s. Reaction conditions: : volume of catalyst = 1 cm3, temperature = 300 °C, IRA/O,/N,
=5/5/90 mol %, contact time = 1 second. Symbols: Isorosalva Alcohol conversion (X IRA, orange), Oxygen conversion (X O,, dark red)
carbon balance (C-balance, purple), Opalene selectivity (S OPA, light blue), other by-products selectivity (S Others, black) and COx
selectivity (S COx, grey).
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Scheme S1: Proposed mechanism of DD cyclization towards CD over CuO/SiO,.
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Figure S17: results of the ODH of IRA over CuO/y-Fe,03 as a function of the time on stream. Reaction conditions: volume of catalyst =
1.cm?3, temperature = 300 °C, contact time () = 1 second. Symbols: Isorosalva Alcohol conversion (X IRA, orange), Oxygen conversion
(X O,, dark red) carbon balance (C-balance, purple), Opalene selectivity (S OPA, light blue), other by-products selectivity (S Others,
black) and CO, selectivity (S CO,, grey).
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Figure S18: X-ray powder diffraction pattern of a) CuO/SiO; fresh (F, black) and after reaction (AR, red).
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Figure S19: X-ray powder diffraction pattern of y-Fe,0s fresh (F) and after reaction (AR).
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Figure S20: X-ray powder diffraction pattern of CuO/y-Fe,0s3 fresh (F) and after reaction (AR).

Chapter S3: Detailed discussion of the TPR characterization of CuO/y-Fe,0;, /y-Fe,03;and CuO/SiO,

The TPR reduction profiles of CuO/SiO,, CuO/y-Fe,0; and y-Fe,03 are shown in Figure S21. The reduction of
Cu0/Si0, (orange line) started at 200 °C already, with a maximum of H, consumption centred at 316 °C, which
was in good agreement with the previous results (e.g., the presence of reduced species of copper in the
catalyst after the ODH of IRA at 300 °C). On the other hand, y-Fe,0; (light blue line) was less reducible, and
the hydrogen consumption started at a much higher temperature (> 350 °C), with a maximum at 450 °C when
the temperature ramp reached the final isotherm.
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Figure S21: Temperature programmed reduction profiles for CuO/y-Fe,0s (red), y-Fe 03 (light blue) and CuO/SiO,.

Finally, the TPR profile of CuO/y-Fe,0s (red line) was characterized by two maxima of H, consumption plus a
very broad band during the final isotherm. The first maximum, similarly to CuO/SiO,, was centred at 323 °C



while the second maximum was centred at 441 °C, similarly to y-Fe,0; (450 °C). The first consumption
corresponded to the reduction of supported CuO to Cu and the second corresponded to the reduction of the
support. However, it was found the H, uptake calculated integrating the area of the first maximum (322 °C)
was 6.4 mL (30.5 mL/g), corresponding to twice the moles of H, required to reduce all the supported CuO to
Cu(0). Therefore, also a fraction of Fe(lll) of the maghemite support, possibly the oxide supporting Cu-species,
is reduced at this low temperature. Finally, the total H, uptake (peak centred at 322 plus peak centred at 441
°C) was 13.5 mL (64.9 mL/g) and matched very well the theoretical value required to reduce all CuO/y-Fe,0;
to Cu(0) + Fe;0,4 (13.2 mL).
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