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Supplementary Figures
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Figure S1 Calibration curve used to calculate the soluble coke concentration.
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Figure S2. N2 adsorption-desorption isotherm for all fresh zeolite-based catalysts.
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The bimodal distributions of the NH3-TPD profiles (Figure S3) allow their Gaussian 

deconvolutions to estimate the contributions of the different types of acidity in the catalysts, 

namely a mild acidity (a1) and a stronger acidity (a2) presenting a higher temperature NH3 

desorption peak. The temperatures of the maximum values of each peak are designated as T1 and 

T2, respectively. Overall, the NiZ15 catalyst (the most acidic) has the highest proportion of weaker 

acidic sites (70.6 %). While the weaker acidity peaks for the NiY, NiZ15, and NiZ40 catalysts have 

maxima at T1 = 281-292 oC, the same peak for the Niß catalyst presents its maximum at T1 = 257 

°C, indicating a weaker nature for the a1 sites by comparison. This is analogous to what is observed 

for the a2 acidic sites, where the maximum for the Niß peak is located at 341 °C, 23-42 oC less 

than for the higher acidity peaks of the other catalysts. This denotes that the Niß catalyst has the 

overall weakest acidic sites of all the studied catalysts.
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Figure S3 Deconvolution of the NH3-TPD curves for all zeolite-based catalysts.
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The acid properties were further investigated by pyridine adsorption infrared spectra 

(Figure S4). All catalysts exhibit three different peaks at the ∼1545, ∼1455, and 1491 cm−1 bands 

that are attributed to the Brønsted acid sites (BASs), Lewis acid sites (LASs), and contributions 

from both the Brønsted and Lewis acid sites, respectively. The measured BAS and LAS 

contributions agree with the acidity properties determined by NH3-TPD (see Table S1), where the 

Niß catalyst shows the highest amount of LAS (1088 µmol g-1), followed by NiZ40 (546 µmol g-

1), NiZ15 (380 µmol g-1), and finally NiY (82 µmol g-1). This high LAS amount of the Niß catalyst 

is attributed to a significant presence of non-framework Si-OH or Al-OH on the surface 1. 

Conversely, the NiY catalyst exhibits the highest BAS amount (131 µmol g-1). All in all, the NiY 

catalyst presents the highest BAS/LAS ratio followed by the NiZ15, NiZ40, and Niß catalysts.

1440 1480 1520 1560

NiY

Ab
so

rb
an

ce
 (a

.u
.)

Ni

Wavenumber (cm-1)

NiZ40

NiZ15

L
B+L B

Figure S4 Infrared spectra of pyridine adsorption on the fresh catalysts.
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Figure S5 XRD patterns for all fresh catalysts.

The NiY catalyst (Figure S6a) shows a regular octahedral crystal morphology with a particle size 

of 400 ± 130 nm. The NiZ15 and NiZ40 catalysts (Figs. S6b-c) present similar morphologies of 

irregular hexagonal crystals with average particle sizes of 210 ± 87 nm and 320 ± 85 nm, 

respectively. Lastly, the Niß catalyst (Figure S6d) shows spherical nano-crystallites with sizes 

between 80 and 100 nm that are clustered in agglomerates of about 200–500 nm.
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Figure S6 SEM images for the fresh catalysts.
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Figure S7 TEM images for the fresh catalysts.
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Figure S8 Schematization of the proposed ethylene oligomerization mechanism over the 

Ni/zeolite catalysts.
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Figure S9 Representative CO2 profile from the TG-TPO/MS analysis of the deactivated NiY 

catalyst after 10 h on stream.
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Figure S10 Gaussian deconvolutions of the CO2 profiles from the TG-TPO/MS analysis of the 

deactivated catalyst samples at different times on stream.
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Figure S11 Selectivity evolution towards a) total coke, b) coke I, and c) coke II over time on 

stream for all catalysts.

S10



300 360 420 480 300 360 420 480

300 360 420 480 300 360 420 480

In
te

ns
ity

 (a
.u

.)

m/z

NiY 

31
4

32
8 34

2
35

6

37
0

38
4

39
8

41
2

42
6

35
4

36
8

38
2

39
6

41
0

42
4

43
8

45
2

46
6

In
te

ns
ity

 (a
.u

.)

m/z

31
4

32
8

34
2

35
6

37
0

38
4

39
8

31
2

32
6

34
0

35
4 36

8

38
2

39
6

41
0

42
4

43
8

NiZ40

c d

In
te

ns
ity

 (a
.u

.)

m/z

NiZ15

31
4

32
8

34
2

35
6

37
0

38
4

39
8

31
2

32
6 34
0 35

4

36
8

38
2

In
te

ns
ity

 (a
.u

.)

m/z

Ni

39
6

38
2

41
0 42

4 43
8

45
2

36
8

35
4

46
6

48
0

49
4

35
6

37
0 38

4 39
8

41
2 42

6
44

0
45

5
46

8
48

2

a b

Figure S12 LDI FT-ICR/MS signals in the m/z = 300-500 range for all catalysts deactivated at a 

time on stream of 5h. 
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Figure S13 Color-coded isoabundance plots for the total cokes formed at a) 1 h, b) 5 h, and c) 10 

h on stream using the NiY catalyst. Darker colors represent higher species concentration while 

lighter colors represent lower concentrations (in a logarithmic scale). 
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Figure S14 Color-coded isoabundance plots for the total cokes formed at a) 1 h, b) 5 h, and c) 10 

h on stream using the NiZ40 catalyst. Darker colors represent higher species concentration, while 

lighter colors represent lower concentrations (in a logarithmic scale).
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Figure S15 Color-coded isoabundance plots for the total cokes formed at a) 1 h, b) 5 h, and c) 10 

h on stream using the NiZ15 catalyst. Darker colors represent higher species concentration while 

lighter colors represent lower concentrations (in a logarithmic scale).
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Figure S16 Color-coded isoabundance plots for the total cokes formed at a) 1 h, b) 5 h, and c) 10 

h on stream using the Niβ catalyst. Darker colors represent higher species concentration while 

lighter colors represent lower concentrations (in a logarithmic scale).
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Figure S17 Chromatograms obtained from the GC analysis of the soluble cokes formed in the 

NiZ40 catalyst at different times on stream. The signal at the bottom corresponds to the extract 

obtained from applying the coke extraction protocol on a fresh (non-reacted) NiZ40 catalyst, which 

was used to discern the GC peaks corresponding to coke species from those which have a zeolitic 

origin. 
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Figure S18 1H NMR spectrum of soluble cokes formed in the NiZ40 catalyst at different times on 

stream. 
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Figure S19 a) Specific type of protons by region and b) total aromatic and aliphatic hydrogens as 

calculated from integrating the 1H NMR spectra (Figure S22) for the soluble cokes formed in the 

NiZ40 catalyst at different times on stream. The designations of the different types of protons are 

listed in Table S1. 
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Supplementary Tables

Table S1 Structural assignments for the integration of the soluble coke 1H NMR spectra as 

reported by Poveda et al.2

Region
(ppm)

Structural assignment

9.0-12.0 H1 Aldehydic and carboxylic hydrogen
7.2-9.0 H2 Aromatic hydrogen linked to aromatic carbons in di- or poly-aromatic 

rings
6.0-7.2 H3 Aromatic hydrogen linked to mono-aromatic rings
4.5-6.0 H4 Olefinic hydrogen
2.0-4.5 H5 Paraffinic and naphthenic hydrogen (-CH, -CH2, and -CH3) linked to 

aromatic systems in  position
1.5-2.0 H6 Naphthenic hydrogen (-CH2),  to aromatic systems
1.0-1.5 H7 Paraffinic hydrogen,  to aromatic systems, alkyl termination
0.1-1.0 H8 Paraffinic hydrogen (-CH3),  and more to aromatic systems
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