Supporting Information

Oxygen-deficient MoO_{3-x} evoked synergistic photo-thermal catalytic CO₂ reduction over g-C₃N₄

Fengyun Su,^a Zhishuai Wang,^a Hailong Cao^a, Haiquan Xie^a, Wenguang Tu,^{*b} Yonghao Xiao^c, Shukui Shi,^a Jiaqi Chen,^a Xiaoli Jin,^a Xin Ying Kong^{*c}

a Engineering Technology Research Center of Henan Province for Solar Catalysis; College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.

b School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China .

c Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore.

Corresponding author

E-mail: SuFY0407@163.com (F. Su), <u>tuwenguang@cuhk.edu.cn</u> (W. Tu), <u>xinying.kong@ntu.edu.sg</u> (X. Y. Kong)

Figure S1 EPR spectrum of 1%-MoO₃/g-C₃N₄ in the dark.

Figure S2 Photo-thermal catalytic CO_2 reduction into (a) CO and (b) CH_4 over 1%- $MoO_{3-x}/g-C_3N_4$ and 1%- $MoO_3/g-C_3N_4$ under UV-Vis-IR light irradiation for 2 h.

Table S1 Comparison of photocatalytic activity of CO_2 reduction over g-C₃N₄-based materials reported in the literature.

Photocatalytic Materials	Light Source	CH ₄ Production rate	CO Production rate	Ref.
$MoO_{3-x}/g-C_3N_4$	300 W Xe lamp	4.53µmol/g/h	43.15µmol/g/h	This work

g-C ₃ N ₄ /Cu ₂ O@Cu	300 W Xe lamp	3.1µmol/g/h	10.8µmol/g/h	[1]
CeO ₂ /3D g-C ₃ N ₄	300 W Xe lamp	3.03µmol/g/h	4.69µmol/g/h	[2]
W ^{6+/} g-C ₃ N ₄ Cu _{2-x} S/g-C ₃ N ₄ NiO/g-C ₃ N ₄	300 W Xe lamp 300 W Xe lamp 300 W Xe lamp	4.45μmol/g/h 23.7μmol/g/h 1.79μmol/g/h	5.75μmol/g/h 319.4μmol/g/h 2.75μmol/g/h	[3] [4] [5]
$FeV_2O_4/g-C_3N_4$	300 W Xe lamp	0.715µmol/g/h	9.58µmol/g/h	[6]

References

[1] B. L. Dai, W. Zhao, W. Wei, J.H. Cao, G. Yang, S.J. Li, C. Sun, D.Y. Leung, Photocatalytic reduction of CO_2 and degradation of Bisphenol-S by g- $C_3N_4/Cu_2O@$ Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight. Carbon, 193 (2022) 272-284.

[2] X. X. Zhao, J. R. Guan, J. Z. Li, X. Li, H. Q. Wang, P. W. Huo, Y. S. Yan, $CeO_2/3D$ g-C₃N₄ heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO₂ reduction. Applied Surface Science, 537 (2021) 147891.

[3] Y. J. Liang, X. Wu, X. Y. Liu, C. H. Li, S. W. Liu, Recovering solar fuels from photocatalytic CO_2 reduction over W⁶⁺-incorporated crystalline g-C₃N₄ nanorods by synergetic modulation of active centers. Applied Catalysis B: Environmental, 304 (2022) 120978.

[4] L. S. Jiang, K. Wang, X. Y. Wu, and G. K. Zhang, Highly Enhanced Full Solar Spectrum-Driven Photocatalytic CO_2 Reduction Performance in $Cu_{2-x}S/g-C_3N_4$ Composite: Efficient Charge Transfer and Mechanism Insight. Solar RR1, 5 (2021) 2000326.

[5] L. X. Wang, Y. L. Dong, J. Y. Zhang, F. F. Tao, J. J. Xu, Construction of NiO/g-C₃N₄ pn heterojunctions for enhanced photocatalytic CO₂ reduction. Journal of Solid State Chemistry, 308 (2022) 122878.

[6] X. Zhao, D. F. Han, M. J. Dai, Y. Y. Fan, Z. X. Wang, D. X. Han, L. Niu, Direct Z-scheme $FeV_2O_4/g-C_3N_4$ binary catalyst for highly selective reduction of carbon dioxide. Chemical Engineering Journal, 436 (2022) 132051.