Chitosan-derived carbon supported CoO combined with CdS facilitates visible light catalytic hydrogen evolution

Peijing Guo^a, Shaoyu Yuan^a, Bingrong, Guo^b, Siwei Li^{b*}, Yongjun Gao^{a*}

a College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.

b Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong

University, Xi'an 710049, China.

*Corresponding author, E-mail: yjgao@hbu.edu.cn (Yongjun Gao); lisiwei@xjtu.edu.cn (Siwei Li)

Figure S1. The quantum efficiency of different catalysts.

Photocatalysts	Photocatalyst dosage (mg)	Light source	Sacrificial reagent & Reaction solvent	Hydrogen evolution rate (mmol/g/h)	Refs.
CC-2-300	10	300 W Xe lamp	20 vol% LA,	10.60	This
		$\lambda \ge 420 nm$	Water (40 mL)		work
CAS/NEA1	10	5 W LED white light	$0.25 \text{ M} \text{ Na}_2 \text{SO}_3$	7.09	[1]
			+0.35 M Na ₂ S,		
LDII			Water (30 mL)		
CoPy/CdS	10	300 W Xe lamp λ> 420nm	1.5 M Na ₂ SO ₃	0.50	[2]
NP c			+2.1 M Na ₂ S,		
INIKS			Water (20 mL)		
NMS/SCN	50	300 W Xe lamp	10 vol% TEOA,	0.6585	[3]
		$\lambda > 420 nm$	Water (90 mL)		
CdSe/CdS	10	300 W Xe lamp	0.1 M	1 152	[4]
		$\lambda \ge 400 nm$	Na ₂ SO ₃ /Na ₂ S	1.135	

 Table S1. Comparison between CC-2-300 and other reported catalysts on the visible-light

 photocatalytic hydrogen evolution reaction.

Figure S2. The XPS Cd3d and S2p spectra of recycled CC-N-300 after five runs.

References

 M. Yang, K. Wang, Z. Jin, Pyramidal CdS polyhedron modified with NiAl LDH to form S-scheme heterojunction for efficient photocatalytic hydrogen evolution, ChemCatChem, 13 (2021) 3525-3548.
 Z. Sun, B. Lv, J. Li, M. Xiao, X. Wang, P. Du, Core–shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light, J. Energy Chem. A, 4 (2016) 1598-1602.

[3] Y. Chen, F. Su, H. Xie, R. Wang, C. Ding, J. Huang, Y. Xu, L. Ye, One-step construction of S-scheme heterojunctions of N-doped MoS_2 and S-doped $g-C_3N_4$ for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 404 (2021) 126498-126507.

[4] A. Thibert, F.A. Frame, E. Busby, M.A. Holmes, F.E. Osterloh, D.S. Larsen, Sequestering highenergy electrons to facilitate photocatalytic hydrogen generation in CdSe/CdS nanocrystals, J. Phys. Chem. Lett., 2 (2011) 2688-2694.